Alcool/Réactivité
Les alcools peuvent être engages comme nucléophile dans la formation d’ester, d’acétal ou d’éther via l’alcoolate correspondant. Ils peuvent aussi subir des réactions de substitution ou d’élimination via l’alcoxonium correspondant.
Réaction de substitution
modifierDans le cas d’une réaction SN2, le produit de la réaction subit une inversion de configuration alors que dans le cas d’une réaction SN1, le carbocation intermédiaire conduit a une rupture de la stéréosélectivité, le produit obtenu contient alors un mélange racémique.
Réaction d’élimination
modifierL’élimination de l’ion oxonium conduit à l’alcène le plus substitué selon la règle de Zaitev.
Délocalisation du carbocation intermédiaire
modifierTransposition due au carbocation
modifierAddition nucléophile
modifierL’utilisation d’un acide nucléophile (HCl, HBr etc.) rend l’alcène sensible à l’addition de l’anion de l’acide selon la règle de Markovnikov.
En règle général la réaction de déshydratation met toujours en compétition les réactions d’addition et d’élimination, la proportion des produits varie selon la nucléophilie de l’anion utilisé dans l’acide.
Nucléophilie :
Formation d’ester
modifierEster Organique
modifierLes alcools peuvent former des ester par réaction avec les acides carboxyliques, les chlorures d’acyles et les anhydrides d’acides.
Ester Inorganique
modifierLes alcools peuvent également former des ester chromique, sulfurique, phosphorique ou sulfonique par réaction avec les acides inorganiques correspondants.
Halogénation
modifierFormation d’acétal
modifierLa formation d’acétal est généralement utilisée pour la protection acidolabile des cétones et aldéhydes ainsi que des hydroxydes vicinaux notamment en chimie des saccharides.
Oxydation
modifierJones
modifierLa réaction de Jones permet de réaliser l’oxydation des alcools primaires et secondaire en aldéhyde et en cétones, l’oxydation des alcools primaires peut se poursuivre jusqu'à l’obtention d’acide carboxylique.
Corey
modifierLe réactif de Corey permet d’oxyder les alcools primaires en aldéhydes sans poursuivre l’oxydation jusqu'à la formation d’acides carboxyliques, les insaturations sont insensibles à l’oxydation.
Collins
modifierRuthénium
modifierLes insaturations sont sensibles à l’oxydation par l’oxyde de ruthénium
Manganèse
modifierL’oxyde de manganèse permet la réduction sélective des alcools allyliques en aldéhyde ou cétone sans poursuivre l’oxydation jusqu'à l’acide carboxylique dans le cas des alcools primaires.
Swern
modifierL’oxydation de Swern permet de réaliser l’oxydation des alcools primaires et secondaire en aldéhyde ou en cétones sans poursuivre l’oxydation jusqu'à l’acide carboxylique dans le cas des alcools primaires
Activants :