Début de la boite de navigation du chapitre

Les alcools peuvent être engages comme nucléophile dans la formation d’ester, d’acétal ou d’éther via l’alcoolate correspondant. Ils peuvent aussi subir des réactions de substitution ou d’élimination via l’alcoxonium correspondant.

Réactivité
Icône de la faculté
Chapitre no 5
Leçon : Alcool
Chap. préc. :Préparation
Chap. suiv. :Sommaire
fin de la boite de navigation du chapitre
En raison de limitations techniques, la typographie souhaitable du titre, « Alcool : Réactivité
Alcool/Réactivité
 », n'a pu être restituée correctement ci-dessus.

Réaction de substitution

modifier

Dans le cas d’une réaction SN2, le produit de la réaction subit une inversion de configuration alors que dans le cas d’une réaction SN1, le carbocation intermédiaire conduit a une rupture de la stéréosélectivité, le produit obtenu contient alors un mélange racémique.

Réaction d’élimination

modifier

L’élimination de l’ion oxonium conduit à l’alcène le plus substitué selon la règle de Zaitev.

Fichier:Déshydratation1.png

Fichier:Déshydratation2.png

Délocalisation du carbocation intermédiaire

modifier

Transposition due au carbocation

modifier

Addition nucléophile

modifier

L’utilisation d’un acide nucléophile (HCl, HBr etc.) rend l’alcène sensible à l’addition de l’anion de l’acide selon la règle de Markovnikov.

En règle général la réaction de déshydratation met toujours en compétition les réactions d’addition et d’élimination, la proportion des produits varie selon la nucléophilie de l’anion utilisé dans l’acide.

Fichier:AddNu.png

Nucléophilie :

Formation d’ester

modifier

Ester Organique

modifier

Les alcools peuvent former des ester par réaction avec les acides carboxyliques, les chlorures d’acyles et les anhydrides d’acides.

Fichier:Estérification1.png

Fichier:Esterification2.png

Ester Inorganique

modifier

Les alcools peuvent également former des ester chromique, sulfurique, phosphorique ou sulfonique par réaction avec les acides inorganiques correspondants.

Fichier:AcideS.png

Fichier:Acide chromique.png

Halogénation

modifier

Fichier:Halogénation1.png

Fichier:Halogénation2.png

Formation d’acétal

modifier

La formation d’acétal est généralement utilisée pour la protection acidolabile des cétones et aldéhydes ainsi que des hydroxydes vicinaux notamment en chimie des saccharides.  

Oxydation

modifier

La réaction de Jones permet de réaliser l’oxydation des alcools primaires et secondaire en aldéhyde et en cétones, l’oxydation des alcools primaires peut se poursuivre jusqu'à l’obtention d’acide carboxylique.

Le réactif de Corey permet d’oxyder les alcools primaires en aldéhydes sans poursuivre l’oxydation jusqu'à la formation d’acides carboxyliques, les insaturations sont insensibles à l’oxydation.

Fichier:Oxydation Corey.png

Collins

modifier

Fichier:Oxydation collins.png

Ruthénium

modifier

Les insaturations sont sensibles à l’oxydation par l’oxyde de ruthénium

Manganèse

modifier

L’oxyde de manganèse permet la réduction sélective des alcools allyliques en aldéhyde ou cétone sans poursuivre l’oxydation jusqu'à l’acide carboxylique dans le cas des alcools primaires.

L’oxydation de Swern permet de réaliser l’oxydation des alcools primaires et secondaire en aldéhyde ou en cétones sans poursuivre l’oxydation jusqu'à l’acide carboxylique dans le cas des alcools primaires

Activants :

Corey-Kim

modifier

Fichier:Corey-kim.png

Dopenaueur

modifier