Début de la boite de navigation du chapitre
fin de la boite de navigation du chapitre
En raison de limitations techniques, la typographie souhaitable du titre, «
Amplificateur opérationnel : Sommateur et soustracteur Amplificateur opérationnel/Sommateur et soustracteur », n'a pu être restituée correctement ci-dessus.
Amplificateur opérationnel idéal
modifier
Nous rappelons que
v
+
=
v
−
{\displaystyle v^{+}=v^{-}}
{
v
+
=
0
v
−
=
V
1
R
1
+
V
2
R
2
+
V
3
R
3
+
⋯
+
V
n
R
n
+
V
s
R
f
1
R
1
+
1
R
2
+
1
R
3
+
⋯
+
1
R
n
+
1
R
f
{\displaystyle {\begin{cases}v^{+}=0\\v^{-}={\frac {{\frac {V_{1}}{R_{1}}}+{\frac {V_{2}}{R_{2}}}+{\frac {V_{3}}{R_{3}}}+\cdots +{\frac {V_{n}}{R_{n}}}+{\frac {V_{s}}{R_{f}}}}{{\frac {1}{R_{1}}}+{\frac {1}{R_{2}}}+{\frac {1}{R_{3}}}+\cdots +{\frac {1}{R_{n}}}+{\frac {1}{R_{f}}}}}\\\end{cases}}}
0
=
V
1
R
1
+
V
2
R
2
+
V
3
R
3
+
⋯
+
V
n
R
n
+
V
s
R
f
1
R
1
+
1
R
2
+
1
R
3
+
⋯
+
1
R
n
+
1
R
f
{\displaystyle 0={\frac {{\frac {V_{1}}{R_{1}}}+{\frac {V_{2}}{R_{2}}}+{\frac {V_{3}}{R_{3}}}+\cdots +{\frac {V_{n}}{R_{n}}}+{\frac {V_{s}}{R_{f}}}}{{\frac {1}{R_{1}}}+{\frac {1}{R_{2}}}+{\frac {1}{R_{3}}}+\cdots +{\frac {1}{R_{n}}}+{\frac {1}{R_{f}}}}}}
0
=
V
1
R
1
+
V
2
R
2
+
V
3
R
3
+
⋯
+
V
n
R
n
+
V
s
R
f
{\displaystyle 0={\frac {V_{1}}{R_{1}}}+{\frac {V_{2}}{R_{2}}}+{\frac {V_{3}}{R_{3}}}+\cdots +{\frac {V_{n}}{R_{n}}}+{\frac {V_{s}}{R_{f}}}}
−
V
s
R
f
=
V
1
R
1
+
V
2
R
2
+
V
3
R
3
+
⋯
+
V
n
R
n
{\displaystyle -{\frac {V_{s}}{R_{f}}}={\frac {V_{1}}{R_{1}}}+{\frac {V_{2}}{R_{2}}}+{\frac {V_{3}}{R_{3}}}+\cdots +{\frac {V_{n}}{R_{n}}}}
V
s
=
−
R
f
(
V
1
R
1
+
V
2
R
2
+
V
3
R
3
+
⋯
+
V
n
R
n
)
{\displaystyle {V_{s}}=-R_{f}\left({\frac {V_{1}}{R_{1}}}+{\frac {V_{2}}{R_{2}}}+{\frac {V_{3}}{R_{3}}}+\cdots +{\frac {V_{n}}{R_{n}}}\right)}
Amplificateur opérationnel non idéal
modifier
{
v
+
=
0
v
−
=
V
1
R
1
+
V
2
R
2
+
V
3
R
3
+
⋯
+
V
n
R
n
+
V
s
R
f
1
R
1
+
1
R
2
+
1
R
3
+
⋯
+
1
R
n
+
1
R
f
V
s
=
A
(
v
+
−
v
−
)
{\displaystyle {\begin{cases}v^{+}=0\\v^{-}={\frac {{\frac {V_{1}}{R_{1}}}+{\frac {V_{2}}{R_{2}}}+{\frac {V_{3}}{R_{3}}}+\cdots +{\frac {V_{n}}{R_{n}}}+{\frac {V_{s}}{R_{f}}}}{{\frac {1}{R_{1}}}+{\frac {1}{R_{2}}}+{\frac {1}{R_{3}}}+\cdots +{\frac {1}{R_{n}}}+{\frac {1}{R_{f}}}}}\\V_{s}=A\left(v^{+}-v^{-}\right)\end{cases}}}
v
−
=
−
V
s
A
{\displaystyle v^{-}=-{\frac {V_{s}}{A}}}
V
s
A
=
−
(
V
1
R
1
+
V
2
R
2
+
⋯
+
V
n
R
n
+
V
s
R
s
1
R
1
+
1
R
2
+
⋯
+
1
R
n
+
1
R
f
)
{\displaystyle {\frac {V_{s}}{A}}=-({\frac {{\frac {V_{1}}{R_{1}}}+{\frac {V_{2}}{R_{2}}}+\cdots +{\frac {V_{n}}{R_{n}}}+{\frac {V_{s}}{R_{s}}}}{{\frac {1}{R_{1}}}+{\frac {1}{R_{2}}}+\cdots +{\frac {1}{R_{n}}}+{\frac {1}{R_{f}}}}})}
V
s
(
1
R
1
+
1
R
2
+
⋯
+
1
R
n
+
1
R
f
)
=
−
A
(
V
1
R
1
+
V
2
R
2
+
⋯
+
V
n
R
n
+
V
s
R
f
)
{\displaystyle V_{s}\left({\frac {1}{R_{1}}}+{\frac {1}{R_{2}}}+\cdots +{\frac {1}{R_{n}}}+{\frac {1}{R_{f}}}\right)=-A\left({\frac {V_{1}}{R_{1}}}+{\frac {V_{2}}{R_{2}}}+\cdots +{\frac {V_{n}}{R_{n}}}+{\frac {V_{s}}{R_{f}}}\right)}
V
s
(
1
R
1
+
1
R
2
+
⋯
+
1
R
n
+
1
R
f
)
=
−
(
A
×
V
1
R
1
+
A
×
V
2
R
2
+
⋯
+
A
×
V
n
R
n
+
A
×
V
s
R
f
)
{\displaystyle V_{s}\left({\frac {1}{R_{1}}}+{\frac {1}{R_{2}}}+\cdots +{\frac {1}{R_{n}}}+{\frac {1}{R_{f}}}\right)=-\left({\frac {A\times V_{1}}{R_{1}}}+{\frac {A\times V_{2}}{R_{2}}}+\cdots +{\frac {A\times V_{n}}{R_{n}}}+{\frac {A\times V_{s}}{R_{f}}}\right)}
V
s
(
1
R
1
+
1
R
2
+
⋯
+
1
R
n
+
1
R
f
)
+
A
×
V
s
R
f
=
−
(
A
×
V
1
R
1
+
A
×
V
2
R
2
+
⋯
+
A
×
V
n
R
n
)
{\displaystyle V_{s}\left({\frac {1}{R_{1}}}+{\frac {1}{R_{2}}}+\cdots +{\frac {1}{R_{n}}}+{\frac {1}{R_{f}}}\right)+{\frac {A\times V_{s}}{R_{f}}}=-\left({\frac {A\times V_{1}}{R_{1}}}+{\frac {A\times V_{2}}{R_{2}}}+\cdots +{\frac {A\times V_{n}}{R_{n}}}\right)}
V
s
(
1
R
1
+
1
R
2
+
⋯
+
1
R
n
+
1
R
f
+
A
R
f
)
=
−
(
A
×
V
1
R
1
+
A
×
V
2
R
2
+
⋯
+
A
×
V
n
R
n
)
{\displaystyle V_{s}\left({\frac {1}{R_{1}}}+{\frac {1}{R_{2}}}+\cdots +{\frac {1}{R_{n}}}+{\frac {1}{R_{f}}}+{\frac {A}{R_{f}}}\right)=-\left({\frac {A\times V_{1}}{R_{1}}}+{\frac {A\times V_{2}}{R_{2}}}+\cdots +{\frac {A\times V_{n}}{R_{n}}}\right)}
V
s
(
1
R
1
+
1
R
2
+
⋯
+
1
R
n
+
1
+
A
R
f
)
=
−
A
×
(
V
1
R
1
+
V
2
R
2
+
⋯
+
V
n
R
n
)
{\displaystyle V_{s}\left({\frac {1}{R_{1}}}+{\frac {1}{R_{2}}}+\cdots +{\frac {1}{R_{n}}}+{\frac {1+A}{R_{f}}}\right)=-A\times \left({\frac {V_{1}}{R_{1}}}+{\frac {V_{2}}{R_{2}}}+\cdots +{\frac {V_{n}}{R_{n}}}\right)}
Conclusion
V
s
=
−
A
×
V
1
R
1
+
V
2
R
2
+
⋯
+
V
n
R
n
1
R
1
+
1
R
2
+
⋯
+
1
R
n
+
1
+
A
R
f
{\displaystyle V_{s}=-A\times {\frac {{\frac {V_{1}}{R_{1}}}+{\frac {V_{2}}{R_{2}}}+\cdots +{\frac {V_{n}}{R_{n}}}}{{\frac {1}{R_{1}}}+{\frac {1}{R_{2}}}+\cdots +{\frac {1}{R_{n}}}+{\frac {1+A}{R_{f}}}}}}
Pour rejoindre le résultat précédent on pose :
A
≫
1
{\displaystyle A\gg 1}
ce qui nous donne
V
s
=
−
A
×
V
1
R
1
+
V
2
R
2
+
⋯
+
V
n
R
n
1
R
1
+
1
R
2
+
⋯
+
1
R
n
+
1
R
f
+
A
R
f
{\displaystyle V_{s}=-A\times {\frac {{\frac {V_{1}}{R_{1}}}+{\frac {V_{2}}{R_{2}}}+\cdots +{\frac {V_{n}}{R_{n}}}}{{\frac {1}{R_{1}}}+{\frac {1}{R_{2}}}+\cdots +{\frac {1}{R_{n}}}+{\frac {1}{R_{f}}}+{\frac {A}{R_{f}}}}}}
V
s
=
−
A
×
V
1
R
1
+
V
2
R
2
+
⋯
+
V
n
R
n
A
R
f
{\displaystyle V_{s}=-A\times {\frac {{\frac {V_{1}}{R_{1}}}+{\frac {V_{2}}{R_{2}}}+\cdots +{\frac {V_{n}}{R_{n}}}}{\frac {A}{R_{f}}}}}
V
s
=
−
R
f
×
(
V
1
R
1
+
V
2
R
2
+
⋯
+
V
n
R
n
)
{\displaystyle V_{s}=-R_{f}\times \left({\frac {V_{1}}{R_{1}}}+{\frac {V_{2}}{R_{2}}}+\cdots +{\frac {V_{n}}{R_{n}}}\right)}
Nous rappelons que
v
+
=
v
−
{\displaystyle v^{+}=v^{-}}
{
v
+
=
V
2
×
R
g
R
2
+
R
g
v
−
=
V
1
×
R
f
+
V
s
×
R
1
R
f
+
R
1
{\displaystyle {\begin{cases}v^{+}={\frac {V_{2}\times R_{g}}{R_{2}+R_{g}}}\\v^{-}={\frac {V_{1}\times R_{f}+V_{s}\times R1}{R_{f}+R_{1}}}\\\end{cases}}}
V
2
×
R
g
R
2
+
R
g
=
V
1
×
R
f
+
V
s
×
R
1
R
f
+
R
1
{\displaystyle {\frac {V_{2}\times R_{g}}{R_{2}+R_{g}}}={\frac {V_{1}\times R_{f}+V_{s}\times R_{1}}{R_{f}+R_{1}}}}
V
2
×
R
g
×
(
R
f
+
R
1
)
=
(
V
1
×
R
f
+
V
s
×
R
1
)
×
(
R
2
+
R
g
)
{\displaystyle V_{2}\times R_{g}\times \left(R_{f}+R_{1}\right)=\left(V_{1}\times R_{f}+V_{s}\times R_{1}\right)\times \left(R_{2}+R_{g}\right)}
V
2
×
R
g
×
(
R
f
+
R
1
)
=
V
1
×
R
f
×
(
R
2
+
R
g
)
+
V
s
×
R
1
×
(
R
2
+
R
g
)
{\displaystyle V_{2}\times R_{g}\times \left(R_{f}+R_{1}\right)=V_{1}\times R_{f}\times \left(R_{2}+R_{g}\right)+V_{s}\times R_{1}\times \left(R_{2}+R_{g}\right)}
V
s
=
V
2
×
R
g
×
(
R
f
+
R
1
)
−
V
1
×
R
f
×
(
R
2
+
R
g
)
R
1
×
(
R
2
+
R
g
)
{\displaystyle V_{s}={\frac {V_{2}\times R_{g}\times \left(R_{f}+R_{1}\right)-V_{1}\times R_{f}\times \left(R_{2}+R_{g}\right)}{R_{1}\times \left(R_{2}+R_{g}\right)}}}
V
s
=
V
2
×
R
g
×
(
R
f
+
R
1
)
R
1
×
(
R
2
+
R
g
)
−
V
1
×
R
f
R
1
{\displaystyle V_{s}=V_{2}\times {\frac {R_{g}\times \left(R_{f}+R_{1}\right)}{R_{1}\times \left(R_{2}+R_{g}\right)}}-V_{1}\times {\frac {R_{f}}{R_{1}}}}
V
s
=
V
2
×
R
g
×
(
R
f
+
R
1
)
R
1
×
(
R
2
+
R
g
)
−
V
1
×
R
f
R
1
{\displaystyle V_{s}=V_{2}\times {\frac {R_{g}\times \left(R_{f}+R_{1}\right)}{R_{1}\times \left(R_{2}+R_{g}\right)}}-V_{1}\times {\frac {R_{f}}{R_{1}}}}
Amplificateur opérationnel non idéal
modifier