On pose :
v
→
=
v
x
e
x
→
+
v
y
e
y
→
+
v
z
e
z
→
{\displaystyle {\overrightarrow {v}}=v_{x}{\overrightarrow {e_{x}}}+v_{y}{\overrightarrow {e_{y}}}+v_{z}{\overrightarrow {e_{z}}}}
.
Tout d’abord, on calcule le produit vectoriel entre parenthèses :
∇
→
∧
v
→
=
(
∂
v
z
∂
y
−
∂
v
y
∂
z
)
e
x
→
+
(
∂
v
x
∂
z
−
∂
v
z
∂
x
)
e
y
→
+
(
∂
v
y
∂
x
−
∂
v
x
∂
y
)
e
z
→
{\displaystyle {\overrightarrow {\nabla }}\wedge {\overrightarrow {v}}=({\frac {\partial v_{z}}{\partial y}}-{\frac {\partial v_{y}}{\partial z}}){\overrightarrow {e_{x}}}+({\frac {\partial v_{x}}{\partial z}}-{\frac {\partial v_{z}}{\partial x}}){\overrightarrow {e_{y}}}+({\frac {\partial v_{y}}{\partial x}}-{\frac {\partial v_{x}}{\partial y}}){\overrightarrow {e_{z}}}}
.
Puis le deuxième produit vectoriel :
(
∇
→
∧
v
→
)
∧
v
→
=
(
(
∂
v
x
∂
z
−
∂
v
z
∂
x
)
v
z
−
(
∂
v
y
∂
x
−
∂
v
x
∂
y
)
v
y
)
e
x
→
+
(
(
∂
v
y
∂
x
−
∂
v
x
∂
y
)
v
x
−
(
∂
v
z
∂
y
−
∂
v
y
∂
z
)
v
z
)
e
y
→
+
(
(
∂
v
z
∂
y
−
∂
v
y
∂
z
)
v
y
−
(
∂
v
x
∂
z
−
∂
v
z
∂
x
)
v
x
)
e
z
→
{\displaystyle ({\overrightarrow {\nabla }}\wedge {\overrightarrow {v}})\wedge {\overrightarrow {v}}={\Big (}({\frac {\partial v_{x}}{\partial z}}-{\frac {\partial v_{z}}{\partial x}})v_{z}-({\frac {\partial v_{y}}{\partial x}}-{\frac {\partial v_{x}}{\partial y}})v_{y}{\Big )}{\overrightarrow {e_{x}}}+{\Big (}({\frac {\partial v_{y}}{\partial x}}-{\frac {\partial v_{x}}{\partial y}})v_{x}-({\frac {\partial v_{z}}{\partial y}}-{\frac {\partial v_{y}}{\partial z}})v_{z}{\Big )}{\overrightarrow {e_{y}}}+{\Big (}({\frac {\partial v_{z}}{\partial y}}-{\frac {\partial v_{y}}{\partial z}})v_{y}-({\frac {\partial v_{x}}{\partial z}}-{\frac {\partial v_{z}}{\partial x}})v_{x}{\Big )}{\overrightarrow {e_{z}}}}
.
Par ailleurs,
(
v
→
⋅
∇
→
)
⋅
v
→
=
(
v
x
∂
v
x
∂
x
+
v
y
∂
v
x
∂
y
+
v
z
∂
v
x
∂
z
)
e
x
→
+
(
v
x
∂
v
y
∂
x
+
v
y
∂
v
y
∂
y
+
v
z
∂
v
y
∂
z
)
e
y
→
+
(
v
x
∂
v
z
∂
x
+
v
y
∂
v
z
∂
y
+
v
z
∂
v
z
∂
z
)
e
z
→
{\displaystyle ({\overrightarrow {v}}\cdot {\overrightarrow {\nabla }})\cdot {\overrightarrow {v}}={\Big (}v_{x}{\frac {\partial v_{x}}{\partial x}}+v_{y}{\frac {\partial v_{x}}{\partial y}}+v_{z}{\frac {\partial v_{x}}{\partial z}}{\Big )}{\overrightarrow {e_{x}}}+{\Big (}v_{x}{\frac {\partial v_{y}}{\partial x}}+v_{y}{\frac {\partial v_{y}}{\partial y}}+v_{z}{\frac {\partial v_{y}}{\partial z}}{\Big )}{\overrightarrow {e_{y}}}+{\Big (}v_{x}{\frac {\partial v_{z}}{\partial x}}+v_{y}{\frac {\partial v_{z}}{\partial y}}+v_{z}{\frac {\partial v_{z}}{\partial z}}{\Big )}{\overrightarrow {e_{z}}}}
et
1
2
∇
→
v
2
=
1
2
(
∂
(
v
x
2
+
v
y
2
+
v
z
2
)
∂
x
e
x
→
+
∂
(
v
x
2
+
v
y
2
+
v
z
2
)
∂
y
e
y
→
+
∂
(
v
x
2
+
v
y
2
+
v
z
2
)
∂
z
e
z
→
)
{\displaystyle {\frac {1}{2}}{\overrightarrow {\nabla }}v^{2}={\frac {1}{2}}{\Big (}{\frac {\partial (v_{x}^{2}+v_{y}^{2}+v_{z}^{2})}{\partial x}}{\overrightarrow {e_{x}}}+{\frac {\partial (v_{x}^{2}+v_{y}^{2}+v_{z}^{2})}{\partial y}}{\overrightarrow {e_{y}}}+{\frac {\partial (v_{x}^{2}+v_{y}^{2}+v_{z}^{2})}{\partial z}}{\overrightarrow {e_{z}}}{\Big )}}
.
Sans perte de généralité, nous allons nous intéresser uniquement aux composantes en
e
x
→
{\displaystyle {\overrightarrow {e_{x}}}}
:
1
2
∂
(
v
x
2
+
v
y
2
+
v
z
2
)
∂
x
=
v
x
∂
v
x
∂
x
+
v
y
∂
v
y
∂
x
+
v
z
∂
v
z
∂
x
{\displaystyle {\frac {1}{2}}{\frac {\partial (v_{x}^{2}+v_{y}^{2}+v_{z}^{2})}{\partial x}}=v_{x}{\frac {\partial v_{x}}{\partial x}}+v_{y}{\frac {\partial v_{y}}{\partial x}}+v_{z}{\frac {\partial v_{z}}{\partial x}}}
.
Toujours en ne s'intéressant qu'aux composantes en
e
x
→
{\displaystyle {\overrightarrow {e_{x}}}}
, on constate que
(
(
v
→
⋅
∇
→
)
⋅
v
→
−
1
2
∇
→
v
2
)
⋅
e
x
→
=
(
v
x
∂
v
x
∂
x
+
v
y
∂
v
x
∂
y
+
v
z
∂
v
x
∂
z
)
−
(
v
x
∂
v
x
∂
x
+
v
y
∂
v
y
∂
x
+
v
z
∂
v
z
∂
x
)
=
(
∂
v
x
∂
z
−
∂
v
z
∂
x
)
v
z
−
(
∂
v
y
∂
x
−
∂
v
x
∂
y
)
v
y
=
(
(
∇
→
∧
v
→
)
∧
v
→
)
⋅
e
x
→
{\displaystyle {\Big (}({\overrightarrow {v}}\cdot {\overrightarrow {\nabla }})\cdot {\overrightarrow {v}}-{\frac {1}{2}}{\overrightarrow {\nabla }}v^{2}{\Big )}\cdot {\overrightarrow {e_{x}}}={\Big (}v_{x}{\frac {\partial v_{x}}{\partial x}}+v_{y}{\frac {\partial v_{x}}{\partial y}}+v_{z}{\frac {\partial v_{x}}{\partial z}}{\Big )}-{\Big (}v_{x}{\frac {\partial v_{x}}{\partial x}}+v_{y}{\frac {\partial v_{y}}{\partial x}}+v_{z}{\frac {\partial v_{z}}{\partial x}}{\Big )}=({\frac {\partial v_{x}}{\partial z}}-{\frac {\partial v_{z}}{\partial x}})v_{z}-({\frac {\partial v_{y}}{\partial x}}-{\frac {\partial v_{x}}{\partial y}})v_{y}=(({\overrightarrow {\nabla }}\wedge {\overrightarrow {v}})\wedge {\overrightarrow {v}})\cdot {\overrightarrow {e_{x}}}}
.
La démonstration est la même pour les autres composantes.