Fonction génératrice/Fonction génératrice d'une famille de polynômes
Définition de la fonction génératrice des polynômes.
modifierOn peut définir des fonctions génératrices pour les familles de polynômes.
Soit Pn une famille de polynômes. On appelle fonction génératrice associée à la famille Pn, la fonction FP définie par :
ou :
Selon la famille étudiée, on choisira l’une ou l’autre des deux expressions selon la commodité des calculs.
Dans les paragraphes suivants, nous allons étudier quelques exemples.
Polynôme de Tchebytchev de première espèce.
modifierIls sont définis par :
On a alors :
Polynôme de Tchebytchev de seconde espèce.
modifierIls sont définis par :
On a alors :
Polynôme de Laguerre.
modifierIls sont définis par :
Ou plus simplement par :
On a alors :
Polynôme d’Hermite.
modifierIls sont définis par :
Ou plus simplement par :
On a alors :
Polynôme de Legendre.
modifierIls sont définis par :
Ou plus simplement par :
On a alors :
Démonstration
modifierD'après le théorème des résidus : où est un cercle de centre O et de rayon 1 avec |x|<1
- donc :
Étudions maintenant les conditions de convergence de
Soit un réel non nul. Étudions la convergence de
- Comme
- et:
- si
- Dans ces conditions, nous sommes en présence d'une série géométrique convergente :
- Déterminons les racines en z du dénominateur :
- Si est croissante :
- Si est décroissante :
- est donc toujours défini. Le dénominateur est alors :
- en notant: et sans oublier :
- Il faut maintenant déterminer si les pôles a et b sont situés à l'intérieur du cercle unité :
- ♦ Étudions:
- est donc croissante ainsi que :
a(x) est donc en dehors du cercle unité.
- ♦ Étudions
b(x) est donc croissante ainsi que :
b(x) est donc à l'intérieur du cercle unité. D'après le théorème des résidus, il vient alors :