« Recherche:Acides aminés codants » : différence entre les versions

m
Robot : Remplacement de texte automatisé (-<p>(.*)</p> +\1\n)
m (Robot : Remplacement de texte automatisé (-¿ +¿, -À +À, -Á +Á, -Â +Â, -Ã +Ã, -Ä +Ä, -Å +Å, -Æ +Æ, -Ç +Ç, -È +È, -É +É, -Ê +Ê, -Ë +Ë, -Ì +Ì, -&Iacut...)
m (Robot : Remplacement de texte automatisé (-<p>(.*)</p> +\1\n))
}}
 
<p> Ce sont les acides aminés qui sont utilisés pour la traduction. Pourquoi et comment seuls ces aas sont-ils sélectionnés pour la traduction?</p>
 
<p>6.2.14 Paris</p>
<p><u> Le groupe des aas codants:</u></p>
 
<p><u> Le groupe des aas codants:</u></p>
 
<ul>
<li>On devrait dire qu'il y en a 21 à 23, car la fMet est un aa codant et possède même 2 tRNA! Le groupe de type mathématique que j'ai signalé ( début avant-dernière page du 23.1.14 ) se confirme encore quand on considère la pyrolysine = proline + lysine, qui possède un codon propre, de même que la SeC.</li>
</li>
</ul>
<p>&nbsp; Nous voyons ainsi que liposome et ADN constituent les 2 pôles de l'évolution moléculaire et que ARN et protéines sont leurs intermédiaires.</p>
 
<p>04.03.14</p>
<p>Les aas forment une famille, un groupe dans le sens mathématique. J'ai réuni dans un&nbsp;[http://ekladata.com/blogooolife.eklablog.com/perso/ecrits/detricotage/aa-familles.ods tableau] l'ensemble des aas et leurs dérivés dans le métabolisme centrale. L'idée c'est d'analyser le comportement et la structure des enzymes qui les modifient. Essai de comparer 2 enzymes ayant la même fonction mais ne différent que par un seul carbone du substrat (D et E). Essai de comparer les enzymes de transamination entre aa et oxo: on reste en famille. En comparant 261.57 et 261.1 il s'avère désormais que la fonction catalytique tiens d'abord de sa structure secondaire, séquence de betas, de turn et d'hélices (voir&nbsp;[http://ekladata.com/blogooolife.eklablog.com/perso/ecrits/detricotage/transamine.odt l'interprétation] en relation avec le tableau précédent).</p>
 
<p>09.03.14 Paris</p>
<p>Les aas forment une famille, un groupe dans le sens mathématique. J'ai réuni dans un&nbsp;[http://ekladata.com/blogooolife.eklablog.com/perso/ecrits/detricotage/aa-familles.ods tableau] l'ensemble des aas et leurs dérivés dans le métabolisme centrale. L'idée c'est d'analyser le comportement et la structure des enzymes qui les modifient. Essai de comparer 2 enzymes ayant la même fonction mais ne différent que par un seul carbone du substrat (D et E). Essai de comparer les enzymes de transamination entre aa et oxo: on reste en famille. En comparant 261.57 et 261.1 il s'avère désormais que la fonction catalytique tiens d'abord de sa structure secondaire, séquence de betas, de turn et d'hélices (voir&nbsp;[http://ekladata.com/blogooolife.eklablog.com/perso/ecrits/detricotage/transamine.odt l'interprétation] en relation avec le tableau précédent).</p>
<p> L'idée de départ est de comparer les enzymes utilisant le même substrat mais différent par un CH2 ( longueur ) seulement. C'est le cas d'une molécule dont le squelette contient du glutamate par rapport à l&rsquo;aspartate.</p>
 
<p>18.3.14 Paris</p>
<p>09.03.14 Paris</p>
<p>''' 1''' - <u> Racémases</u> ( voir tableau précédent )</p>
 
<p> La comparaison de spectre en aas est faite sur la même souche de E.Coli. Il n'y a pas de structures à comparer.</p>
<p> L'idée de départ est de comparer les enzymes utilisant le même substrat mais différent par un CH2 ( longueur ) seulement. C'est le cas d'une molécule dont le squelette contient du glutamate par rapport à l&rsquo;aspartate.</p>
 
<p>18.3.14 Paris</p>
 
<p>''' 1''' - <u> Racémases</u> ( voir tableau précédent )</p>
 
<p> La comparaison de spectre en aas est faite sur la même souche de E.Coli. Il n'y a pas de structures à comparer.</p>
 
<ul>
<li>Pour E : apparemment E augmente de 33% mais entraîne avec lui FPRV ( 38% pour P et V ) comme si E est neutralisé ioniquement par R. Pourquoi P et V augmentent si fortement?</li>
<li>En comparaison avec Pyrococcus ( pho ), une archée hyper- thermophile, sur l'aspartate ( D ) E et K augmentent chez pho comme si c'était une réaction à la température et K équilibre ioniquement E à la place de R. Les faibles fréquences ( CHMNQWY ) diminuent fortement chez pho comme au passage de D vers E et P reste constant. Ces aas seraient réactifs mais interviendraient peu dans la racémisation. La température augmenterait inutilement leur réactivité, ce qui déstabiliserait l'enzyme.</li>
</ul>
<p> En conclusion: Il semble que le carbone excédentaire de E ait une influence sur la racémisation. Dans d'autres réactions, autre que la racémisation, 2 aas différents peuvent être utilisés par la même enzyme. Il serait souhaitable d'avoir la structure de D ( EC 511.13 ) chez E.Coli. La comparaison entre pho ( D ) et eco ( E ), malgré la trop influence de la température et la différence du nombre des aas montre que les hélices alpha sont conservées alors que les feuillets bêta diffèrent énormément ( max 5/11 et beaucoup de grands chez E ). Est-ce l'influence de la température pour les bêta ?</p>
 
<p>''' 2''' - <u> Déformylase</u>: EC351.15/68 chez [http://ekladata.com/blogooolife.eklablog.com/perso/ecrits/detricotage/aa-familles.ods kko], une bactérie.</p>
 
<ul>
<li>Il est évident que E et D agissent très différemment puisque D utilise le Zn alors que E non, et les longueurs sont très différentes. Nous ne retrouvons pas les mêmes changement des spectres de fréquence des aas qu'avec les racémases. Notamment E baisse quand on passe de D à E, alors qu'il augmente avec la racémase.</li>
<li>On retrouvera ces résultats en plus affinés dans les transaminases ( onglet&nbsp;[http://ekladata.com/blogooolife.eklablog.com/perso/ecrits/detricotage/aa-familles.ods 2611] du tableau précédent ).</li>
</ul>
<p>19.3.14 Paris</p>
 
<p> '''3''' - <u> La famille des aas codants</u>:</p>
<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;J'avais commencé par recenser tous les aas qui se trouvent dans le métabolisme ( onglet [http://ekladata.com/blogooolife.eklablog.com/perso/ecrits/detricotage/aa-familles.ods stats] du tableau précédent ) ainsi que leurs proches dérivés comme les acides oxo et hydroxy en alpha et les D-aas. J'arrive à un total de 160 L-aas environ. C'est énorme par rapport aux 20 aas codants.</p>
 
<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;J'avais commencé par recenser tous les aas qui se trouvent dans le métabolisme ( onglet [http://ekladata.com/blogooolife.eklablog.com/perso/ecrits/detricotage/aa-familles.ods stats] du tableau précédent ) ainsi que leurs proches dérivés comme les acides oxo et hydroxy en alpha et les D-aas. J'arrive à un total de 160 L-aas environ. C'est énorme par rapport aux 20 aas codants.</p>
 
<ul>
<li> La remarque que tout aa D ou L peut perdre ( ou transférer ) son NH2 en donnant oxo m'a conduit à étudier les enzymes EC 261.- . Ces enzymes inter-changent les aas D ou L, mais particulièrement les L. Voici une propriété de groupe comme je l'ai signalé dans 2ème détricotage avec l'analyse de tRNA pour les codons/anticodons. Ces enzymes ont beaucoup de points communs. Elles utilisent toutes un seul cofacteur, B6. Elles ont une taille moyenne par rapport aux autres enzymes cytoplasmiques, autour de 400 aas. Elles sont structurées autour des hélices alphaplus qu'autour des feuillets bêta ( absence d'interaction avec les nucléotides ? ): 40% alpha, moins de 20% bêta et 40% de libres qui sont plutôt courts. Les hélices alpha longues sont nombreuses et le max dépassent les 20 aas et atteint les 32 aas. Elles sont regroupées en 5 classes.</li>
</ol></li>
</ul>
<p>21.3.14 Paris Ce jour j'ai écrit un pense-bête.</p>
 
<p>Suite de <u> La formation du groupe des aas codants</u>.</p>
 
<ul>
<li>Le comment :
<li>Les réactions en chaine entre aas est la condition suffisante.</li>
</ul>
<p>22.3.14 Paris Reprise de la réflexion du 20.3.14 sur</p>
 
<p><u> La formation du groupe des aas codants</u></p>
 
<ul>
<li>Séparation estérification-peptidisation: L'acylation se fait sur l'alcool de la sérine pour intéine, du ribose pour tRNA/synthase, sur le glycérol du PLD; la peptidisation se fait par réarrangement par le ribosome et par l'intéine; je ne sais pas comment se fait la liaison peptidique par enzyme: pseudo ou vraie.</li>
</li>
</ul>
<p>24.3.14 Paris</p>
 
<p>La Méthionine</p>
<p>Notes pour le dernier paragraphe "Qu'en est-il au début de l'évolution moléculaire?". <br /> Seul M paraît n'avoir aucune raison d'être sauf qu'il ne doit pas contrevenir à la fonction du groupe codant. Il me paraît évident que M est peut-être l'aa clé dans la fonction du groupe (acylation peptidisation hydrolyse) puisque il participe à l'acylation indirectement lors des méthylations multiples du tRNA dont une obligatoire puisque conservée chez tous les tRNA, la méthylation de l'uracile en thymine du bras TPC. L'action de M peut intervenir en dernier lieu dans l'évolution moléculaire vers l'acylation du tRNA ce qui expliquerait son rôle d'initiateur de la traduction, avec sa position une dans toutes les protéines, initiation qui vient juste après la finalisation de l'acylation. La méthionine intervient en conjonction avec l'adénine dans SAM pour ces méthylations. C'est le lien le plus étroit entre acides nucléiques et aas pour l'acylation. Le fait que M intervient indirectement rend ces 2 groupes, aas et acides nucléiques complètement étanches. C'est le cas de la lysine aussi qu'on trouve dans la queuosine, mais l'intervention de M est multiple et touche les tRNA et les rRNA, et la synthèse de SAM ne nécessite qu'une seule réaction alors que la queuosine nécessite une voie métabolique entière.</p>
 
<p>25.3.14 Paris</p>
<p>Notes pour le dernier paragraphe "Qu'en est-il au début de l'évolution moléculaire?". <br /> Seul M paraît n'avoir aucune raison d'être sauf qu'il ne doit pas contrevenir à la fonction du groupe codant. Il me paraît évident que M est peut-être l'aa clé dans la fonction du groupe (acylation peptidisation hydrolyse) puisque il participe à l'acylation indirectement lors des méthylations multiples du tRNA dont une obligatoire puisque conservée chez tous les tRNA, la méthylation de l'uracile en thymine du bras TPC. L'action de M peut intervenir en dernier lieu dans l'évolution moléculaire vers l'acylation du tRNA ce qui expliquerait son rôle d'initiateur de la traduction, avec sa position une dans toutes les protéines, initiation qui vient juste après la finalisation de l'acylation. La méthionine intervient en conjonction avec l'adénine dans SAM pour ces méthylations. C'est le lien le plus étroit entre acides nucléiques et aas pour l'acylation. Le fait que M intervient indirectement rend ces 2 groupes, aas et acides nucléiques complètement étanches. C'est le cas de la lysine aussi qu'on trouve dans la queuosine, mais l'intervention de M est multiple et touche les tRNA et les rRNA, et la synthèse de SAM ne nécessite qu'une seule réaction alors que la queuosine nécessite une voie métabolique entière.</p>
<p>Remplacer intrication par résonance électronique. L'arginine équilibre les cations mais aussi interagit avec l'ARN pour l'acylation.</p>
 
<p>9.4.14 Londres</p>
<p>25.3.14 Paris</p>
<p>"Bio-compatibilité":</p>
 
<p> Les protéines commencent par les plus simples, c.a.d les mono puis les oligo-peptides, d'après le principe du nano-monde où il n'y a pas de "frottements". Il n'y a que des synthèses ou des décompositions sans perte de matière. De même que les PLDs s'assemblent ou se séparent sans créer même des liaisons covalentes.<br /> L'ADN et l'ARN peuvent se dupliquer en bloc, tout en restant dans le nano-monde, sans "frottements". Mais là on rejoint les constructions macroscopiques où l'on procède par copie de blocs, ou bien on débite le bloc en blocs de plus en plus petits, ou bien on y crée des motifs de plus en plus petits. L'exemple actuel est la lithographie pour fabriquer les circuits électroniques.<br /> L'ARN ou l'ADN simple brin peut avoir leurs bases modifiées car elles sont très réactivent quand elles ne sont pas appariées. Et ainsi le duplicata d'origine donnera un autre brin différent de l'original.</p>
<p>Remplacer intrication par résonance électronique. L'arginine équilibre les cations mais aussi interagit avec l'ARN pour l'acylation.</p>
<p>Famille des acides aminés protéiques:</p>
 
<p> Le glutathion ECG est un peptide-aa C-terminal, son zwitterion est celui de E, c'est un aa et son radical est le radical de E + un dipeptide C-terminal. La peptidisation avec le CO2 en gamma de E est très courante. Par contre la pepetidisation avec le NH2 en gamma de K n'existe presque pas sauf dans la pyrolysine où le NH2 de P perd ses 2 H et est neutralisé par un méthyle additionnel sur le radical de P. De même chez les procaryotes le NH2 du N-terminal des protéines appartient à M et est neutralisé par un N-formyle. Ce n'est que chez les eucaryotes où M débute les protéines et souvent ce M est éliminé et le NH2 de l'acide aminé N-terminal est neutralisé de différentes manières ou bien il reste libre ( faire plus d'investigations ).<br /> Le glutathion sert de réserve de E, C et G. Mais en même temps il neutralise la réactivité de E et celle, organisationnelle de C. La seule liaison peptidique vraie que les enzymes réussissent à réaliser est celle de C organisateur (soufre), très simple, et G, le plus simple possible, n'ayant pas de radical ----&gt; j'en conclut qu'il y a incompatibilité des radicaux avec la peptidisation par les enzymes. Incompatibilité d'un seul acide aminé libre. En effet les acides aminés libres côtoient les enzymes et des protéines quelconques sans qu'il y ait une réaction quelconque, sauf quand c'est bien orienté. <br /> Importance du rôle organisateur du soufre dans C. C pourrait être à l'initialisation des peptidisations avant les ribosomes notamment avec (EC)n-G. Ces peptides pourraient interagir avec les ARNs pour débuter l'évolution vers les tRNA syntases et les ribosomes. <br /> La liaison E-C peut permettre, comme la chélation des métaux par C, l'introduction de E dans le liposome.</p>
<p>9.4.14 Londres</p>
 
<p>"Bio-compatibilité":</p>
 
<p> Les protéines commencent par les plus simples, c.a.d les mono puis les oligo-peptides, d'après le principe du nano-monde où il n'y a pas de "frottements". Il n'y a que des synthèses ou des décompositions sans perte de matière. De même que les PLDs s'assemblent ou se séparent sans créer même des liaisons covalentes.<br /> L'ADN et l'ARN peuvent se dupliquer en bloc, tout en restant dans le nano-monde, sans "frottements". Mais là on rejoint les constructions macroscopiques où l'on procède par copie de blocs, ou bien on débite le bloc en blocs de plus en plus petits, ou bien on y crée des motifs de plus en plus petits. L'exemple actuel est la lithographie pour fabriquer les circuits électroniques.<br /> L'ARN ou l'ADN simple brin peut avoir leurs bases modifiées car elles sont très réactivent quand elles ne sont pas appariées. Et ainsi le duplicata d'origine donnera un autre brin différent de l'original.</p>
 
<p>Famille des acides aminés protéiques:</p>
 
<p> Le glutathion ECG est un peptide-aa C-terminal, son zwitterion est celui de E, c'est un aa et son radical est le radical de E + un dipeptide C-terminal. La peptidisation avec le CO2 en gamma de E est très courante. Par contre la pepetidisation avec le NH2 en gamma de K n'existe presque pas sauf dans la pyrolysine où le NH2 de P perd ses 2 H et est neutralisé par un méthyle additionnel sur le radical de P. De même chez les procaryotes le NH2 du N-terminal des protéines appartient à M et est neutralisé par un N-formyle. Ce n'est que chez les eucaryotes où M débute les protéines et souvent ce M est éliminé et le NH2 de l'acide aminé N-terminal est neutralisé de différentes manières ou bien il reste libre ( faire plus d'investigations ).<br /> Le glutathion sert de réserve de E, C et G. Mais en même temps il neutralise la réactivité de E et celle, organisationnelle de C. La seule liaison peptidique vraie que les enzymes réussissent à réaliser est celle de C organisateur (soufre), très simple, et G, le plus simple possible, n'ayant pas de radical ----&gt; j'en conclut qu'il y a incompatibilité des radicaux avec la peptidisation par les enzymes. Incompatibilité d'un seul acide aminé libre. En effet les acides aminés libres côtoient les enzymes et des protéines quelconques sans qu'il y ait une réaction quelconque, sauf quand c'est bien orienté. <br /> Importance du rôle organisateur du soufre dans C. C pourrait être à l'initialisation des peptidisations avant les ribosomes notamment avec (EC)n-G. Ces peptides pourraient interagir avec les ARNs pour débuter l'évolution vers les tRNA syntases et les ribosomes. <br /> La liaison E-C peut permettre, comme la chélation des métaux par C, l'introduction de E dans le liposome.</p>
143 371

modifications