« Recherche:Acides aminés codants » : différence entre les versions

m
Robot : Remplacement de texte automatisé (- j'ai + j’ai )
m (Robot : Remplacement de texte automatisé (-n'importe +n’importe))
m (Robot : Remplacement de texte automatisé (- j'ai + j’ai ))
 
<ul>
<li>On devrait dire qu’il y en a 21 à 23, car la fMet est un aa codant et possède même 2 tRNA! Le groupe de type mathématique que j'aij’ai signalé ( début avant-dernière page du 23.1.14 ) se confirme encore quand on considère la pyrolysine = proline + lysine, qui possède un codon propre, de même que la SeC.</li>
<li>Les protéines se distinguent par leur squelette avant tout. C'est ce qui permet d'échafauder des hélices alpha et des feuillets bêta. En analysant la fréquence des aas dans les protéines et leur attachement ( binding ) aux ARN, ADN et entre elles, les radicaux apparaissent comme secondaires. Ils doivent certainement définir la longueur et la force de des structures, mais de façon continue, de telle manière que le changement d'un ou de quelques aas dans ces structures ne doit avoir que très peu d'effet. Cependant on avance toujours que les aas aliphatiques peuvent être interchangeables, alors que nous savons que toute mutation peut entraîner un avantage sélectif à un moment ou l'autre au cours de l'évolution. Les aas autres que les aliphatiques, dans les structures alpha et bêta doivent avoir le même effet, peut-être avec plus d'avantage évolutif. Cela n'a rien à voir avec n’importe quel aa se trouvant impliqué dans un site actif ou y participant. Cet aa donne effectivement des mutants qu'on arrive à cerner tant leurs effets sont importants. <br /> &nbsp;Donc on peut établir le concept suivant pour toutes les macro-molécules:<br />
<ul>
<ul>
<li>Il est évident que E et D agissent très différemment puisque D utilise le Zn alors que E non, et les longueurs sont très différentes. Nous ne retrouvons pas les mêmes changement des spectres de fréquence des aas qu'avec les racémases. Notamment E baisse quand on passe de D à E, alors qu’il augmente avec la racémase.</li>
<li>En essayant de trouver une structure de EC 351.15, j'aij’ai trouvé celle de l'homo sapiens ( hsa ) et du rat ( voir l'alignement des séquences&nbsp;[http://ekladata.com/blogooolife.eklablog.com/perso/ecrits/detricotage/rat15.odt ici] ). Si les sites de binding ( Zn ) et les sites actifs sont identiques, la séquence des aas comporte énormément de différences mais la structure reste la même 1 ou 2 aas près: les statistiques des alpha, bêta, turn et libre sont identiques.</li>
<li>On peut énoncer le principe suivant: une enzyme ayant la même catalyse (même substrats, mêmes produits et même contrôles ) chez 2 organismes différents doit avoir les mêmes sites de binding et d'activité et la même structure. Par contre la séquence des aas dans les structures primaires ( alpha, bêta, turn et libre ) peut varier librement. On peut interpréter ce principe comme la conséquence des forces électromagnétiques créées par ces structures. Avec des longueurs presque égales et une séquence des structures primaires identique, on crée les mêmes forces avec des séquences en aas différentes. Deux remarques importantes cependant:
<ul>
<li> La remarque que tout aa D ou L peut perdre ( ou transférer ) son NH2 en donnant oxo m'a conduit à étudier les enzymes EC 261.- . Ces enzymes inter-changent les aas D ou L, mais particulièrement les L. Voici une propriété de groupe comme je l'ai signalé dans 2{{e}} détricotage avec l'analyse de tRNA pour les codons/anticodons. Ces enzymes ont beaucoup de points communs. Elles utilisent toutes un seul cofacteur, B6. Elles ont une taille moyenne par rapport aux autres enzymes cytoplasmiques, autour de 400 aas. Elles sont structurées autour des hélices alphaplus qu'autour des feuillets bêta ( absence d'interaction avec les nucléotides ? ): 40% alpha, moins de 20% bêta et 40% de libres qui sont plutôt courts. Les hélices alpha longues sont nombreuses et le max dépassent les 20 aas et atteint les 32 aas. Elles sont regroupées en 5 classes.</li>
<li> La structure de ces enzymes ( disposition des structures primaires alpha, bêta, turn et libre ) reste semblable tant que la catalyse est simple, que ça soit chez E.Coli ( eco ) ou chez l'homme ( hsa ). Le cas de EC 261.57 chez la levure ( sce ) montre une très grande différence qui est due au fait que l'enzyme de la levure catalyse de nombreux aa, plus que chez E.Coli ou l'homme. Nous retrouvons là le principe énoncé précédemment avec la déformylase. Nous retrouvons aussi la notion d'iso-enzyme comme avec EC 261.1 et EC 261.57 où il suffit de faire une digestion contrôlée de&nbsp;[http://www.genome.jp/dbget-bin/www_bget?ec:2.6.1.57 261.57] pour retrouver les fonctions de 261.1 . <br /> De même que pour les déformylases la structure de l'enzyme reste à peu près la même, les sites d'attache et d'activité sont identiques, seules les séquences des aas dans les structures primaires changent. La notion d'iso-enzyme ne traite que de la catalyse, un substrat donné transformé en un produit donné. Les spécificités du principe que j'avance met en exergue l'évolution. Que ça soit chez l'homme ou la bactérie la structure est la même, seule change la séquence des aas dans les structures primaires. La séquence des aas doit avoir un impact évolutif certain, comme tout changement, mais il doit être très faible. Ça devrait concerner des différences faibles de vitesse de catalyse ou de coefficient d'affinité pour tel ou tel substrat ou encore mieux de réaction à son environnement chimique et protéique. La catalyse est alors modulée par des mutations ponctuelles.</li>
<li> L'importance des hélices alpha en longueur et en nombre m'a suggéré une idée qui à priori semble saugrenue mais en poussant la réflexion, elle ne semble pas impossible. Cette idée c'est que l'hélice ressemble à une onde, et l'ensemble de l'enzyme ressemble à une succession de n&oelig;uds et de ventres comme dans une corde en vibration. Or dernièrement j'aij’ai abordé l'intrication dans l'ADN ( voir [http://blogooolife.eklablog.com/le-gradient-du-vivant-a107011514 gradien]t du vivant ) et la structure cristalline de l'ADN ( voir ARN-[http://blogooolife.eklablog.com/la-continuite-entre-l-evolution-moleculaire-et-l-evolution-darwinienne-a94056871 continuité] ). Et si l'intrication dans l'ADN ( l'intrication qui est de nature quantique et donc ondulatoire ) contraignait son système de réparation à produire des séquences de bases englobées dans une onde? Ou dit autrement, si le système de réparation réagissait à l'état ondulatoire d'une séquence de bases donnée, état qui active certaines zones électroniques et en désactive d'autres? Ces séquences seraient susceptibles, indirectement j'en conviens, de produire des hélices alpha dans l'enzyme. Mais cet effet indirect se retrouve dans le processus de duplication de certaines zones de l'ADN; les palindromes, les tandems, les duplications donnent, avec l'évolution, des protéines qui ont des surfaces complémentaires qui leur permettent de former des homomers ou des hétéromers. Oh! combien fréquents chez les protéines. Mais aussi les capsides des virus d'une parfaite géométrie, ressemblant à un cristal. <br /> L'importance de cette idée sur les hélices alpha, c'est que l'évolution est provoquée, contrainte, accélérée par l'ensemble du chromosome. Et vice versa cela justifie la longueur des chromosomes. Plus ils sont longs plus l'évolution de leurs gènes est intégrée. Cette résonance quantique au niveau de l'ADN a dû produire rapidement les fonctions catalytiques au début de l'évolution moléculaire et de façon intégrée.</li>
<li> Une 2{{e}} remarque se dégage de cette étude des enzymes 261.- . C'est que le site actif est souvent une glycine ou un autre aa qui agit non pas par son radical mais par le&nbsp;[http://www.uniprot.org/uniprot/P04693 H de N] ou du&nbsp;[http://www.uniprot.org/uniprot/P18335 O du carbonyle] de la liaison peptidique pour établir une liaison H. C'est comme si le radical ne servait à rien. Il ne servirait alors qu'à la formation des hélices et des feuillets. J'avais souvent tiqué sur le fait que la glycine était toujours présente avec d'autres aas ( autres que K qui paraît constant et jouer un rôle important ) dans le binding de l'ATP. C'est comme si le squelette ( séquence primaire des aas ) jouait le rôle le plus important dans la catalyse. Le rapprochement de différentes régions du squelette au substrat ou au cofacteur, rapprochait en fait les radicaux avoisinants qui peuvent alors agir. La conséquence c'est que si les radicaux étaient volumineux, ils empêcheraient ce rapprochement. Ou dit autrement plus les radicaux sont petits plus est forte, subtile et facile à mettre en place une conformation adéquate pour la catalyse. Cela entraîne l'expulsion des molécules d'eau qui peuvent rester cependant en petit nombre. C'est la nécessité des c&oelig;urs hydrophobes des centres catalytiques et leur origine membranaire au début de l'évolution moléculaire.</li>
<li> Les <u> conditions nécessaires pour qu'un groupe d'aas deviennent codants</u> et produire les protéines que l'on connaît.<ol>
<li>À grande distance le squelette et les forces électromagnétiques générées par l'organisation des structures primaires empêchent ces liaisons. À grande distance l'établissement des liaisons covalentes ( ponts disulfures) et hydrogène entre radicaux est dictée par la fonction de la protéine qui a évoluée dans ce sens ( par évolution moléculaire ou darwinienne ).</li>
<li>À courte distance c'est la non-réactivité des radicaux qui devient une nécessité dans le cas des ions -NH3+ et -CO2- imposés par la réaction de la protéine vis-à-vis du solvant aqueux. C'est le cas de D E K R. Si un D ou E était au même niveau qu'un K ou R la liaison ionique serait assez puissante pour courber fortement le squelette: K a 4 carbones CH2 et R 5 atomes ( 4 C et 1 N ) avant le cation NH2+. D et E ont respectivement 1 et 2 carbones CH2 avant le CO2-. Les ions sont non seulement une nécessité pour la réaction vis-à-vis du solvant aqueux, mais sont une nécessité pour une légère courbure du squelettepour provoquer la formation des hélices. Aussi les radicaux les portants ne devraient pas être trop longs.</li>
<li>L'organisation de la protéine se fait aussi en fonction du solvant comme le liposome s'organise en double couche sphérique. Et ce sont les radicaux qui entrent en jeux. Pour un solvant aqueux on aura besoin de radicaux hydrophiles, ionisés ou polaires, pour un solvant hydrophobe nous aurons besoins de radicaux hydrophobes. Or il s'avère que ces 2 types de radicaux doivent être présents tous les 2 et toujours dans une protéine car dans l'eau l'extérieur de la protéine est en contact avec l'eau et le c&oelig;ur est vidé de son eau pour permettre la catalyse, donc hydrophobe. Les protéines membranaires s'accrochent avec des aas aliphatiques et j'aij’ai proposé dans (&nbsp;[http://blogooolife.eklablog.com/longueur-des-aa-a90229899 longueur des aas] ) que la différence de longueur entre V et L s'expliquerait par la mise en tenaille du PLD par ces 2 aas. Par contre l'intérieur des canaux membranaires ou bien les protéines dont une partie est dans le cytoplasme, doivent posséder des aas hydrophiles et fonctionnels pour les transports et la catalyse.</li>
<li> Le pouvoir organisateur des radicaux: (20.3.14) Nous sommes toujours dans le principe d'[http://blogooolife.eklablog.com/la-continuite-entre-l-evolution-moleculaire-et-l-evolution-darwinienne-a94056871 organisation] du concept global. Nous avons vu l'organisation de la protéine par les liaisons H de son squelette, la nécessité de radicaux peu réactifs à grande distance pour maintenir cette organisation et enfin l'impact du solvant sur cette organisation. <br /> Nous avons traité dans le concept global le principe d'organisation au niveau thermodynamique, c a d au niveau des mélanges de petites molécules minérales ou organiques soumises aux lois de la thermodynamique classique et non à la thermodynamique des surfaces minérales ou organiques comme le liposome. Nous avons proposé que ce sont les atomes de la 3{{e}} et 4{{e}} (métaux de transition) ligne du tableau des éléments qui avaient un pouvoir organisateur vis-à-vis du solvant et des autres petites molécules grâce à leur cortège électronique puissant. Les métaux de transition sont à l'origine de la synthèse abiotique des acides gras et rentrent dans les cofacteurs des enzymes essentielles du métabolisme. De même le phosphate apparaît comme l'organisateur minéral principal du liposome et du métabolisme. <br /> Dans l'organisation de la protéine nous avons bien sûr les métaux de transition, mais comme cofacteur seulement, Ils ne sont pas constitutifs des protéines. Par contre nous avons le soufre qui vient après le phosphore dans le tableau des éléments et il fait partie intégrante des protéines avec C et M, 2 aas du groupe codant. Pour l'organisation de la protéine nous avons en plus, comme l'ADN et l'ARN, des cycles aromatiques qui sont organisateurs aussi, à l'instar des atomes organisateurs ci-dessus, grâce à leur cortège d'électrons délocalisés. L'organisation quasi cristalline de l'ADN est due principalement à ce pouvoir organisateur des bases nucléiques que nous appelons intrication (&nbsp;&nbsp;[http://blogooolife.eklablog.com/le-gradient-du-vivant-a107011514 gradien]t du vivant ). L'intrication n'est pas mise en &oelig;uvre dans les protéines car les cycles aromatiques ne sont pas mis en contact les uns avec les autres. Par contre quand ils sont en contact avec l'eau, ils créent une organisation locale, et quand ils sont dans un environnement hydrophobe ( liposome ou au milieu de la protéine ayant exclut l'eau ) ils peuvent agir par les forces électromagnétiques et à distance sur les radicaux polaires et ioniques et interagir entre-eux. <br /> Les cycles aromatiques ont 2 actions fondamentales sur l'évolution moléculaire: ils participent à l'organisation intrinsèque de la protéine et ensuite ils seront les principaux acteurs dans l'interaction ( ADN, ARN ) / protéine. <br />&nbsp;&nbsp;Au début de l'évolution moléculaire c'est la cystéine qui pourrait initier la formation de l'organisation des 1ers peptides, car elle dérive facilement de la sérine elle-même considérée comme parmi les 1ères molécules qui apparaissent (&nbsp;voir&nbsp;[http://fr.wikiversity.org/wiki/Recherche:Chiralit%C3%A9_pr%C3%A9biotique chiralité] prébiotique ). Nous développerons ce point dans la formation du groupe des aas codant après avoir appliqué le principe d'action/réaction du concept global aux protéines.</li>
</ol></li>
</ol></li>
</ul>
21.3.14 Paris Ce jour j'aij’ai écrit un pense-bête.
 
Suite de <u> La formation du groupe des aas codants</u>.
143 371

modifications