« Systèmes de Cramer/Pivot de Gauss » : différence entre les versions

m
Robot : Remplacement de texte automatisé (- n'est pas + n’est pas , - Aujourd'hui + Aujourd’hui , - d'euros + d’euros , - d'agir + d’agir , - l'apparence + l’apparence )
m (Robot : Remplacement de texte automatisé (- d'en + d’en ))
m (Robot : Remplacement de texte automatisé (- n'est pas + n’est pas , - Aujourd'hui + Aujourd’hui , - d'euros + d’euros , - d'agir + d’agir , - l'apparence + l’apparence ))
 
== Introduction ==
La méthode du « pivot de Gauss », ou « élimination de Gauss-Jordan », est un algorithme efficace permettant de résoudre — lorsque c’est possible — un système d'équations linéaires. Contrairement à la méthode de Cramer, le pivot de Gauss ne requiert pas la connaissance des matrices (sauf pour sa démonstration) et donne même des solutions lorsque le système n'estn’est pas de Cramer.
 
Numériquement, l'implémentation sur ordinateur de cet algorithme donne généralement de ''mauvais'' résultats (même s'il est rapide) : les erreurs d'arrondi se cumulent et faussent généralement la solution. Néanmoins, il n'utilise que des additions et multiplications, ce qui en fait le meilleur du point de vue du rapport simplicité/efficacité disponible en calcul manuel.
{{Attention|Il y a un ''ordre précis'' dans le choix du pivot. Ne pas le respecter peut amener à des résultats aberrants.}}
 
La méthode du pivot de Gauss permet également de calculer le rang, l'inverse et le déterminant d'une matrice. Sa complexité est en <math>O\left(n^3\right)</math>, ce qui en fait un algorithme plus efficace que la méthode de Cramer, plus général que celle-ci. Néanmoins, il ne s'agit pas du « meilleur algorithme envisageable » : on pense qu'un tel algorithme atteindrait une complexité proche de <math>O \left( n^2 \right)</math>. Nous avons évoqué plus haut la faible précision de cet algorithme — en réalité, dans certains contextes, il est possible d'obtenir une précision ''exacte'' — mais ce n'estn’est pas avec des nombres réels !
 
Cette notion de complexité signifie que, si on tente de résoudre un système de ''n'' équations à ''n'' inconnues, il faut effectuer de l’ordre de ''n³'' opérations. Dans notre exemple, ''n = 3'' — il faut tout de même effectuer de l’ordre de 27 opérations.
143 371

modifications