« Polynôme/Exercices/Racines de polynômes » : différence entre les versions

m
→‎Exercice 1-6 : +exo analogue mais plus simple
m (→‎Exercice 1-6 : +exo analogue mais plus simple)
Sur <math>\R</math>, puisque <math>Q</math> est unitaire et ne s'annule pas (car <math>QR=1+T^2>0</math>), <math>Q>0</math>. Or <math>Q(a_i)R(a_i)=1</math>, donc <math>Q(a_i)=1</math>. Par conséquent, <math>Q=1+TU</math> avec (puisque <math>Q</math> est unitaire et de degré <math>\le n</math>), <math>U=0</math> ou <math>1</math>. Mais <math>U=1</math> est impossible (<math>T^2+1</math> n'est pas divisible par <math>T+1</math>) donc <math>U=0</math>, si bien que <math>Q=1</math>.
 
(Cette solution est inspirée de ce document : <nowiki>https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&ved=2ahUKEwiIiejAiLjfAhWOyoUKHdPAA6AQFjABegQIARAB&url=https%3A%2F%2Fservices.artofproblemsolving.com%2Fdownload.php%3Fid%3DYXR0YWNobWVudHMvZC84L2VhZTZkNzZmODQ1MGI5ZTE5ODc4MDJhMDkwMmZhYmQzOGY2ZDQ4%26rn%3DMDlfNDNFTlNMIE5vcm1lcyBldCBLZXJmID0gS2VyZjIucGRm&usg=AOvVaw1Emxpjkzuk7vVe08delrXa</nowiki>.)
 
Voir aussi l'exercice 6 de http://michel.quercia.free.fr/polyn%C3%B4mes/irreduc.pdf)
}}
 
13 027

modifications