« Approfondissement sur les suites numériques/Suites adjacentes » : différence entre les versions

Contenu supprimé Contenu ajouté
→‎Applications : Plus honnête. Mais à mon avis, le second point est hors sujet et devrait être remplacé par un simple lien
→‎Applications : oups : plus exact, car le lien démontre seulement que n!(e-u_n)<e/(n+1), mais c'est largement suffisant
Ligne 53 :
##::<math>\forall n\in\N\quad u_n=\sum_{k=0}^n\frac1{k!}</math>
##:converge et que sa limite <math>\ell</math> vérifie
##::<math>\forall n\in\N^*\quad u_n0<n!\,(\ell-u_n)<u_n+\frac1{n.n!}1</math>
##:(dans [[Fonction exponentielle/Annexe/Démonstration que la somme infinie de tous les inverses des k! est égale à e]], on a démontré non seulement cela, mais le fait que cette limite <math>\ell</math> est égale au nombre {{nobr|<math>\mathrm e</math>) ;}}
##déduire de cet encadrement que <math>\ell\notin\Q</math>.
Ligne 65 :
#:Ainsi, <math>(u_n)</math> et <math>(v_n)</math> sont bien adjacentes et le premier point est démontré.
#*Montrons alors que leur limite commune <math>\ell</math> est irrationnelle. Il est usuel, pour un montrer qu'un nombre est irrationnel, de raisonner par l'absurde, et c’est précisément ce que nous allons faire ici.
#:Supposons donc que <math>\ell\in\Q</math>, c'est-à-dire qu'il existe <math>(p,q)\in\Z\times\N^*</math> telstel que <math>\ell=\frac pq</math>.
#:On a <math>u_q=\sum_{k=0}^q\frac1{k!}</math>, et l'on en déduit, en réduisant au même dénominateur, que <math>q!\exists a,u_q\in \N,\ u_q=\frac a{q!}Z</math>.
#:Ainsi,Or en utilisant l'encadrementle <math>u_qpremier <\ell<v_q </math>point, on a :
#::<math>\frac{a}{left]0,1\right[\ni q!}<\frac{p}{q}<,(\frac{a}{ell-u_q)=q!}+\,\frac{1}{q. pq-q!} \Longleftrightarrow a<,u_q=p.(q-1)!<a+\frac{1}{-q}!\leq a+1,u_q</math>,
#:Or,ce qui est impossible puisque <math>a,\ p.(q-1)! -q!\,u_q\in \N^*Z</math>, donc l'inégalité ci-dessus est impossible. On a donc montré <math>\ell\notin \Q</math>.
#Pour la seconde application, on va étudier l'approximation décimale d'un nombre réel.
#:Soit <math>a\in \R</math>. On définit les deux suites suivantes :