« Discussion utilisateur:Cgolds » : différence entre les versions

→‎DTF : corr
(→‎DTF : corr)
 
:{{Notif|Supreme assis}}. Vos nombres simplement pairs sont ceux divisibles par 2 et pas par 4 (ils correspondent à ce qu’Euclide appelle impairement pairs), les multi-pairs sont ceux divisibles par 4 (les pairement pairs d’Euclide). 4k est toujours pairement pair (ou "multi-pair" comme vous dites). J’écrirais donc simplement : "si n est divisible par 2 et pas par 4 (resp. est divisible par 4), alors il en est de même pour n+4k, pour tout k". Cela suffit en principe. Si vous voulez aussi donner une preuve et qu’elle soit accessible au plus grand nombre : "Si n est divisible par 2 et pas par 4, il s’écrit n= 2n’, avec n’ impair. Donc n+4k s’écrit 2n’+4k= 2(n’+2k). Si n’ est impair, il en est de même pour n’+2k donc n+4k est divisible par 2, mais pas par 4. Pour le deuxième cas, si n est divisible par 4, il s’écrit n=4n’, donc n+4k=4(n’+k), ce qui montre que n+4k est aussi divisible par 4". Cordialement, --[[Utilisateur:Cgolds|Cgolds]] ([[Discussion utilisateur:Cgolds|discussion]]) 18 janvier 2019 à 16:28 (UTC)
:: Ah ! voilà une réponse qui me ravit à laquelle j'adhère ici. Ce malentendu tombe donc. Et d'un. Il reste à comprendre pourquoi le nombre de divisions possibles par 4 correspond à p et pourquoi on peut remonter à 48² + 55² = 73² à partir de 9 + 11 = 20, le seul nombre pairau carré étant 9. J'ai une petite idée. Je vous l'aurai bien soumise pour avoir votre avis, si votre temps le permet et si vous acceptez une discussion avec un néophyte, petit prof de maths à la retraite de 71 balais ? [[Utilisateur:Supreme assis|<font color="darkslategray">Supreme assis</font>]] ([[Discussion Utilisateur:Supreme assis|<font color="darkslategray">''grain de sel''</font>]]) 18 janvier 2019 à 17:16 (UTC)
2 064

modifications