« Fondements des mathématiques/Des preuves de cohérence » : différence entre les versions

Contenu supprimé Contenu ajouté
m ajout navigateur de chapitre
m Bot : Remplacement de texte automatisé (-oe +œ)
Ligne 64 :
Les paradoxes de la théorie des ensembles ne remettaient pas en question la vérité des principes élémentaires, tels que ceux des théories des nombres entiers. Tant qu’on se limite aux nombres entiers, l’évidence des principes n’est pas contestable. Les théories sont des ensembles de formules et peuvent être définies avec des principes semblables à ceux qui sont utilisés en arithmétique. Dans les deux cas, on peut raisonner comme si l’on parlait de suites finies de signes graphiques. Hilbert faisait remarquer que les nombres peuvent être identifiés à des suites de barres par exemple : 1=/, 2=//, 3=///, 4=////, ... Les formules peuvent de même être identifiées à des suites de lettres, ou symboles. Les ensembles de nombres ou de formules sont des systèmes formels. Tant qu’on se limite aux systèmes formels et à quelques autres ensembles que l’on peut construire à partir d’eux, les mathématiques sont finitaires.
 
On peut formaliser la théorie de Cantor, c’est à dire définir avec précision un ensemble de formules prouvables à partir d’axiomes. On obtient ainsi un ensemble finitaire de formules destinées à dire des vérités sur tous les ensembles, et pas seulement ceux qui peuvent être identifiés à des ensembles finitaires déjà construits. Pour développer la théorie générale des ensembles sans tomber dans des contradictions, on est conduit à étudier un ensemble finitaire. On peut alors espérer prouver avec des méthodes finitaires que la théorie est cohérente. Cela place les mathématiques finitaires au coeurcœur de toutes les mathématiques, parce que si on a prouvé qu’une théorie est cohérente on a établi du même coup l’existence mathématique des êtres qu’elle définit. La fiabilité des méthodes générales peut ainsi être prouvée avec des méthodes finitaires.
 
Hilbert a espéré trouver une théorie finitaire telle que toutes les questions mathématiques y reçoivent une réponse. Cet espoir était justifié en partie, parce que la cohérence de toute théorie est une question finitaire. Gödel a prouvé que ce programme complet de Hilbert n’est pas réalisable. Quelles que soient les théories finitaires que l’on se donne, elles seront toujours insuffisantes pour prouver toutes les vérités. Gödel a aussi prouvé un second théorème d’incomplétude qui a été mal interprété. Il dit qu’en général une théorie mathématique ne peut pas prouver sa propre cohérence. L’interprétation erronée consiste à en conclure que les méthodes finitaires ne suffisent pas pour prouver la cohérence des théories finitaires et qu’il faut abandonner à la fois le programme de Hilbert et la croyance en la prééminence des méthodes élémentaires.