1
modification
(→Exercice 2-1 : +1 question (et sa rép + LI)) |
m (→Exercice 2-3 : coquille) |
||
Le singleton <math>\{0\}</math> est fermé dans <math>K</math> donc si <math>u</math> est continue alors <math>\ker u=u^{-1}\left(\{0\}\right)</math> est fermé dans <math>E</math>.
Réciproquement, supposons que <math>u</math> n'est pas continue et démontrons que <math>\ker u</math> n'est pas fermé. Par hypothèse, il existe une suite <math>(x_n)</math> de la boule unité de <math>E</math> telle que <math>
:<math>y_n:=x_N-\frac{u(x_N)}{u(x_n)}x_n</math>.
Par construction, la suite <math>(y_n)_{n\ge N}</math> est à valeurs dans <math>\ker u</math> et converge vers <math>x_N\notin\ker u</math>, ce qui conclut.
|
modification