Structure algébrique/Monoïde

Début de la boite de navigation du chapitre

Ce chapitre décrit de façon succincte ce qu'est un monoïde.

Monoïde
Icône de la faculté
Chapitre no 3
Leçon : Structure algébrique
Chap. préc. :Magma
Chap. suiv. :Groupe
fin de la boite de navigation du chapitre
En raison de limitations techniques, la typographie souhaitable du titre, « Structure algébrique : Monoïde
Structure algébrique/Monoïde
 », n'a pu être restituée correctement ci-dessus.

Un monoïde est un magma associatif (pour sa loi) et unifère (= qui possède un élément neutre, c'est-à-dire un élément qui ne change pas le résultat de l'opération). Par exemple, l’ensemble des entiers naturels muni de l'addition est un monoïde :

  • D'une part, l'addition d'entiers naturels est associative : pour a,b,c des entiers naturels quelconques, (a+b)+c = a+(b+c).
  • D'autre part, l'élément neutre de l'addition est 0, qui est un entier naturel.

est donc bien un monoïde.