Topologie


La topologie est une branche des mathématiques où l’on approfondit la notion de distance, de continuité, de limite, bien que cet aspect géométrique ne soit pas évident au premier abord pour l'étudiant novice. La topologie permet aussi de faire de l'analyse dans des espaces plus abstraits que comme des espaces fonctionnels. Aucune connaissance préalable n'est nécessaire à l'apprentissage de ce pan des mathématiques modernes, hormis la théorie des ensembles. Pour un tour d'horizon général de ce sujet, on pourra se reporter à l’article de Wikipédia : topologie.

Image logo indiquant les ressources Leçons

Leçon 1 : Symbole icône indiquant que la page est une leçon avancée Topologie générale

Leçon 2 : Non créée Topologie algébrique

Leçon 3 : Non créée Topologie différentielle

Image logo indiquant les ressources Annexes
  • Annexe 02 :
  • Annexe 03 :
Niveau et prérequis conseillés

Cours de niveau 16. Les prérequis conseillés sont :

  • Fonctions d'une variable réelle
    • Fonctions continues
    • Suites et séries, convergence, divergence.
  • Théorie des ensembles
    • Opérations sur les ensembles : union, intersection, passage au complémentaire, loi de De Morgan.
    • Relations d'ordre : ensembles ordonnés, relation d'équivalence.
    • Cardinalité : finitude, dénombrabilité et indénombrabilité.
    • Lemme de Zorn et axiome du choix.

Image logo Modifier ces prérequis

Référents

Ces personnes sont prêtes à vous aider concernant ce cours :

Personne ne s'est déclaré prêt à aider pour ce cours. Pour vous ajouter, cliquez ici.


Image logo Modifier cette liste