Utilisateur:Tom Flamand/Modélisation des Réseaux (M1, 2018)/Activité E
Graphe p 25
modifiera | b | c | d | e | f | g | h | |
---|---|---|---|---|---|---|---|---|
a | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
b | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 |
c | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
d | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 |
e | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
f | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
g | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
h | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
a | b | c | d | e | f | g | h | |
---|---|---|---|---|---|---|---|---|
a | 0 | 1/3 | 1/3 | 1/3 | 0 | 0 | 0 | 0 |
b | 0 | 0 | 1/2 | 0 | 1/2 | 0 | 0 | 0 |
c | 0 | 0 | 0 | 0 | 0 | 0 | 1/2 | 1/2 |
d | 0 | 0 | 1/2 | 0 | 0 | 1/2 | 0 | 0 |
e | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
f | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
g | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
h | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
a | b | c | d | e | f | g | h | |
---|---|---|---|---|---|---|---|---|
a | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 |
b | 1/3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
c | 1/3 | 1/2 | 0 | 1/2 | 0 | 0 | 0 | 0 |
d | 1/3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
e | 0 | 1/2 | 0 | 0 | 0 | 0 | 0 | 0 |
f | 0 | 0 | 0 | 1/2 | 0 | 0 | 0 | 0 |
g | 0 | 0 | 1/2 | 0 | 0 | 0 | 0 | 1 |
h | 0 | 0 | 1/2 | 0 | 0 | 0 | 1 | 0 |
On part du principe que Pa0 = Pb0 = ...= 1/8
Pa1 = Pe0 + Pf0 = 1/4
Pb1 = 1/3 Pa0 = 1/24
Pc1= 1/3 Pa0 + 1/2 Pb0 + 1/2 Pd0 = 1/6
Pd1= 1/3 Pa0 = 1/24
Pe1 = 1/2 Pb0 = 1/16
Pf1= 1/2 Pd0 = 1/16
Pg1 = 1/2 Pc0 + Ph0 = 3/16
Ph1 = = 1/2 Pc0 + Pg0 = 3/16
Pa2 = Pe1 + Pf1 = 1/8
Pb2 = 1/3 Pa1 = 1/12
Pc2= 1/3 Pa1 + 1/2 Pb1 + 1/2 Pd1 = 1/8
Pd2= 1/3 Pa1 = 1/12
Pe2 = 1/2 Pb1 = 1/48
Pf2= 1/2 Pd1 = 1/48
Pg2 = 1/2 Pc1 + Ph1 = 13/48
Ph2 = = 1/2 Pc1 + Pg1 = 13/48
2. Parmi les composantes fortement connexes il y a (g;h) et (a;b;d;e;f)
On remarque que la plupart du fluide se concentre entre les nœuds g et h. Étant donné qu'elles sont fortement connexes entre elles, on imagine qu'à terme elles se partageront l'ensemble du fluide à 2.
3. Il suffit d'ajouter un lien qui parte de g ou h vers un nœud autre que c.
Graphe p 18
modifiercp(1) = 1/4
cp(2) = 1/4
cp(3) = 1/4
cp(4) = 1/6
g(1) = 1 + 1 = 2
g(2) = 1 + 1 + 1 = 3
g(3) = 0,5
g(4) = 0,5
g = 6
Proximité | Intermédiarité | |
---|---|---|
1 | 1/4 | 2 |
2 | 1/4 | 3 |
3 | 1/4 | 1/2 |
4 | 1/6 | 1/2 |