1)1) Cas [a,b[ où -inf < a < b < +inf
Nature de
∫
a
b
f
(
t
)
d
t
{\displaystyle \int _{a}^{b}f(t){\rm {d}}t}
: convergence ou divergence
Début d’un théorème
Théorème
Soit
α
∈
R
{\displaystyle \alpha \in \mathbb {R} }
∫
1
+
∞
1
t
α
d
t
{\displaystyle \int _{1}^{+\infty }{\frac {1}{t^{\alpha }}}{\rm {d}}t}
converge ssi
α
>
1
{\displaystyle \alpha >1}
Pour
α
>
1
,
∫
1
+
∞
1
t
α
d
t
=
1
α
−
1
{\displaystyle \alpha >1,~\int _{1}^{+\infty }{\frac {1}{t^{\alpha }}}{\rm {d}}t={\frac {1}{\alpha -1}}}
Fin du théorème
Début d'une démonstration
Démonstration
t
→
1
t
α
{\displaystyle t\to {\frac {1}{t^{\alpha }}}}
est de classe
C
0
{\displaystyle {\mathcal {C}}^{0}}
sur
[
1
,
+
∞
[
{\displaystyle [1,+\infty [}
1
≤
x
:
∫
1
x
1
t
α
d
t
=
{
ln
x
s
i
α
=
1
x
−
α
+
1
−
1
−
α
+
1
s
i
n
o
n
{\displaystyle 1\leq x:\int _{1}^{x}{\frac {1}{t^{\alpha }}}{\rm {d}}t={\begin{cases}\ln x{\rm {~si~}}\alpha =1\\{\frac {x^{-\alpha +1}-1}{-\alpha +1}}{\rm {~sinon}}\end{cases}}}
ln
x
→
+
∞
(
x
→
+
∞
)
{\displaystyle \ln x\to +\infty (x\to +\infty )}
x
1
−
α
→
{
0
s
i
α
>
1
+
∞
s
i
α
<
1
x
→
+
∞
{\displaystyle x^{1-\alpha }\to {\begin{cases}0{\rm {~si~}}\alpha >1\\+\infty {\rm {~si~}}\alpha <1\\\end{cases}}x\to +\infty }
Pour
α
>
1
,
∫
1
+
∞
1
t
α
d
t
=
lim
x
→
+
∞
1
−
x
1
−
α
α
−
1
=
1
α
−
1
{\displaystyle \alpha >1,\int _{1}^{+\infty }{\frac {1}{t^{\alpha }}}{\rm {d}}t=\lim _{x\to +\infty }{\frac {1-x^{1-\alpha }}{\alpha -1}}={\frac {1}{\alpha -1}}}
Fin de la démonstration
Début d’un théorème
Théorème
Soit
α
∈
R
{\displaystyle \alpha \in \mathbb {R} }
∫
0
+
∞
e
−
α
t
d
t
{\displaystyle \int _{0}^{+\infty }e^{-\alpha t}{\rm {d}}t}
converge ssi
α
>
0
{\displaystyle \alpha >0}
Dans ce cas,
∫
0
+
∞
e
−
α
t
d
t
=
1
α
{\displaystyle \int _{0}^{+\infty }e^{-\alpha t}{\rm {d}}t={\frac {1}{\alpha }}}
Fin du théorème
Début d'une démonstration
Démonstration
t
→
e
−
α
t
∈
C
0
(
R
+
)
{\displaystyle t\to e^{-\alpha t}\in {\mathcal {C}}^{0}(\mathbb {R} ^{+})}
∀
x
∈
R
+
,
∫
0
x
e
−
α
t
d
t
=
{
x
s
i
α
=
0
e
−
α
x
−
1
−
α
s
i
n
o
n
{\displaystyle \forall x\in R^{+},\int _{0}^{x}e^{-\alpha t}{\rm {d}}t={\begin{cases}x{\rm {~si~}}\alpha =0\\{\frac {e^{-\alpha x}-1}{-\alpha }}{\rm {~sinon}}\end{cases}}}
x
→
∫
0
x
e
−
α
t
d
t
{\displaystyle x\to \int _{0}^{x}e^{-\alpha t}{\rm {d}}t}
admet une limite finie en
+
∞
{\displaystyle +\infty }
ssi
α
>
0
{\displaystyle \alpha >0}
Pour
α
>
0
,
∫
0
+
∞
e
−
α
t
d
t
=
lim
x
→
+
∞
e
−
α
x
−
1
−
α
=
1
α
{\displaystyle \alpha >0,\int _{0}^{+\infty }e^{-\alpha t}{\rm {d}}t=\lim _{x\to +\infty }{\frac {e^{-\alpha x}-1}{-\alpha }}={\frac {1}{\alpha }}}
Fin de la démonstration
& \underline{Th}\ \left( a,b \right)\in R{}^\text{2};\ a<b \\
& \alpha \in R \\
& \\
& \int_{a}^{b}{\frac{1}{\left( b-t \right)^{\alpha }}dt}\ converge\ ssi\ \alpha <1 \\
\end{align}</math>
d
e
´
m
_
t
→
1
(
b
−
t
)
α
C
∘
s
u
r
[
a
,
b
[
∀
x
∈
[
a
,
b
[
,
∫
a
x
1
(
b
−
t
)
α
d
t
=
{
−
ln
(
b
−
x
)
+
ln
(
b
−
a
)
s
i
α
=
1
(
b
−
x
)
−
α
+
1
−
(
b
−
a
)
−
α
+
1
−
α
+
1
,
s
i
α
≠
1
x
→
∫
a
x
1
(
b
−
t
)
α
d
t
a
d
m
e
t
u
n
e
lim
i
t
e
f
i
n
i
e
e
n
b
s
s
i
α
<
1
T
h
_
(
c
o
h
e
´
r
e
n
c
e
d
e
l
a
n
o
t
a
t
i
o
n
)
−
∞
<
a
<
b
<
+
∞
S
o
i
t
f
:
[
a
,
b
[
→
K
c
o
n
t
i
n
u
e
p
a
r
m
o
r
c
e
a
u
x
,
s
e
p
r
o
l
o
n
g
e
a
n
t
e
n
u
n
e
f
o
n
c
t
i
o
n
f
~
c
o
n
t
i
n
u
e
p
a
r
m
o
r
c
e
a
u
x
s
u
r
[
a
,
b
]
∫
a
b
f
(
t
)
d
t
c
o
n
v
e
r
g
e
e
t
∫
a
b
f
(
t
)
d
t
=
∫
[
a
,
b
]
f
~
(
t
)
d
t
d
e
´
m
_
f
~
c
o
n
t
i
n
u
e
p
a
r
m
o
r
e
a
u
x
s
u
r
[
a
,
b
]
s
o
i
t
F
:
[
a
,
b
]
→
K
x
→
∫
a
x
f
~
(
t
)
d
t
{\displaystyle {\begin{aligned}&{\underline {d{\acute {e}}m}}\\&t\to {\frac {1}{\left(b-t\right)^{\alpha }}}\ \ C{}^{\circ }\ sur\ [a,b[\\&\forall x\in [a,b[\ ,\ \int _{a}^{x}{{\frac {1}{\left(b-t\right)^{\alpha }}}dt}=\left\{{\begin{aligned}&-\ln \left(b-x\right)+\ln \left(b-a\right)\ si\ \alpha =1\\&{\frac {\left(b-x\right)^{-\alpha +1}-\left(b-a\right)^{-\alpha +1}}{-\alpha +1}},\ si\ \alpha \neq 1\\\end{aligned}}\right.\\&\\&x\to \int _{a}^{x}{{\frac {1}{\left(b-t\right)^{\alpha }}}dt}\ admet\ une\ \lim ite\ finie\ en\ b\ ssi\ \alpha <1\\&\\&{\underline {Th}}\ \left(coh{\acute {e}}rence\ de\ la\ notation\right)\\&-\infty <a<b<+\infty \\&\\&Soit\ f:\ [a,b[\to K\ continue\ par\ morceaux,\ se\ prolongeant\ en\ une\ fonction\ {\tilde {f}}\ continue\ par\ morceaux\ sur\ [a,b]\\&\\&\int _{a}^{b}{f\left(t\right)dt}\ converge\ et\ \int _{a}^{b}{f\left(t\right)dt}=\int _{[a,b]}^{}{{\tilde {f}}\left(t\right)dt}\\&{\underline {d{\acute {e}}m}}\ \ {\tilde {f}}\ continue\ par\ moreaux\ sur\ [a,b]\\&soit\ F:{\begin{matrix}[a,b]\to K\\x\to \int _{a}^{x}{{\tilde {f}}\left(t\right)dt}\\\end{matrix}}\\\end{aligned}}}
f
~
e
s
t
b
o
r
n
e
´
e
s
u
r
[
a
,
b
]
∀
(
x
,
y
)
∈
[
a
,
b
]
2
,
|
F
(
x
)
−
F
(
y
)
|
=
|
∫
y
x
f
~
(
t
)
d
t
|
≤
|
∫
y
x
|
f
~
(
t
)
|
d
t
|
≤
|
∫
y
x
|
|
f
|
|
∞
|
≤
|
x
−
y
|
|
|
f
|
|
∞
F
l
i
p
s
c
h
i
t
z
i
e
n
n
e
,
d
o
n
c
c
o
n
t
i
n
u
e
s
u
r
[
a
,
b
]
∫
a
x
f
(
t
)
d
t
=
∫
a
x
f
~
(
t
)
d
t
=
F
(
x
)
→
F
(
b
)
(
x
→
<
b
)
∫
a
b
f
(
t
)
d
t
c
o
n
v
e
r
g
e
e
t
∫
a
b
f
(
t
)
d
t
=
F
(
b
)
=
∫
[
a
,
b
]
f
~
e
x
e
m
p
l
e
_
∫
−
π
0
s
int
t
d
t
c
o
n
v
e
r
g
e
E
n
e
f
f
e
t
,
t
→
sin
t
t
c
o
n
t
i
n
u
e
s
u
r
[
−
π
,
0
[
,
sin
t
t
→
1
(
t
→
<
0
)
{\displaystyle {\begin{aligned}&{\tilde {f}}\ est\ born{\acute {e}}e\ sur\ [a,b]\\&\forall \left(x,y\right)\in [a,b]{}^{\text{2}},\ \left|F\left(x\right)-F\left(y\right)\right|=\left|\int _{y}^{x}{{\tilde {f}}\left(t\right)dt}\right|\leq \left|\int _{y}^{x}{\left|{\tilde {f}}\left(t\right)\right|dt}\right|\leq \left|\int _{y}^{x}{\left|\left|f\right|\right|_{\infty }}\right|\leq \left|x-y\right|||f||_{\infty }\\&F\ lipschitzienne,\ donc\ continue\ sur\ [a,b]\\&\\&\int _{a}^{x}{f\left(t\right)dt}=\int _{a}^{x}{{\tilde {f}}\left(t\right)dt}=F\left(x\right)\to F\left(b\right)\ \left(x{\overset {<}{\mathop {\to } }}\,b\right)\\&\int _{a}^{b}{f\left(t\right)dt}\ converge\ et\ \int _{a}^{b}{f\left(t\right)dt}=F\left(b\right)=\int _{[a,b]}^{}{\tilde {f}}\\&\\&{\underline {exemple}}\ \int _{-\pi }^{0}{{\frac {s\operatorname {int} }{t}}dt}\ converge\\&\\&En\ effet,\ t\to {\frac {\sin t}{t}}\ continue\ sur\ [-\pi ,0[\ ,\ {\frac {\sin t}{t}}\to 1\ \left(t{\overset {<}{\mathop {\to } }}\,0\right)\\\end{aligned}}}
2)Cas ]a,b] où -inf < a < b < +inf
S
o
i
t
f
:
]
a
,
b
]
→
K
c
o
n
t
i
n
u
e
p
a
r
m
o
r
c
e
a
u
x
.
d
e
´
f
_
:
O
n
d
i
t
q
u
e
l
′
int
e
´
g
r
a
l
e
i
m
p
r
o
p
r
e
∫
a
b
f
(
t
)
d
t
e
x
i
s
t
e
,
a
u
n
s
e
n
s
,
c
o
n
v
e
r
g
e
l
o
r
s
q
u
e
]
a
,
b
]
→
K
x
→
∫
x
b
f
(
t
)
d
t
a
d
m
e
t
u
n
e
lim
i
t
e
I
d
a
n
s
K
(
x
→
>
a
)
I
e
s
t
n
o
t
e
´
e
∫
a
b
f
(
t
)
d
t
S
i
n
o
n
,
o
n
d
i
t
q
u
e
∫
a
b
f
(
t
)
d
t
n
′
e
x
i
s
t
e
p
a
s
,
d
i
v
e
r
g
e
.
T
h
_
α
∈
R
∫
0
1
1
t
α
d
t
c
o
n
v
e
r
g
e
s
s
i
α
<
1
d
e
´
m
_
t
→
1
t
α
C
∘
s
u
r
]
0
,
1
]
∀
x
∈
]
0
,
1
]
,
∫
x
1
d
t
t
α
=
{
−
ln
x
s
i
α
=
1
1
−
x
−
α
+
1
−
α
+
1
s
i
α
≠
1
{\displaystyle {\begin{aligned}&Soit\ f:]a,b]\to K\ continue\ par\ morceaux.\\&\\&{\underline {d{\acute {e}}f}}:\ On\ dit\ que\ l'\operatorname {int} {\acute {e}}grale\ impropre\ \int _{a}^{b}{f\left(t\right)dt}\ existe\ ,\ a\ un\ sens,\ converge\\&lors\ que\ {\begin{matrix}]a,b]\to K\\x\to \int _{x}^{b}{f\left(t\right)dt}\\\end{matrix}}\ admet\ une\ \lim ite\ I\ dans\ K\ \left(x{\overset {>}{\mathop {\to } }}\,a\right)\\&\\&I\ est\ not{\acute {e}}e\ \int _{a}^{b}{f\left(t\right)dt}\\&\\&Sinon,\ on\ dit\ que\ \int _{a}^{b}{f\left(t\right)dt}\ n'existe\ pas,\ diverge.\\&\\&{\underline {Th}}\ \alpha \in R\\&\int _{0}^{1}{{\frac {1}{t^{\alpha }}}dt}\ converge\ ssi\ \alpha <1\\&\\&{\underline {d{\acute {e}}m}}\ \\&{\begin{matrix}t\to {\frac {1}{t^{\alpha }}}\ \ C{}^{\circ }\ sur\ ]0,1]\\\forall x\in ]0,1],\ \int _{x}^{1}{\frac {dt}{t^{\alpha }}}=\left\{{\begin{aligned}&-\ln x\ si\ \alpha =1\\&{\frac {1-x^{-\alpha +1}}{-\alpha +1}}\ si\ \alpha \neq 1\\\end{aligned}}\right.\\\end{matrix}}\\\end{aligned}}}
x
→
∫
x
1
1
t
α
d
t
a
d
m
e
t
u
n
e
lim
i
t
e
(
x
→
>
0
)
s
s
i
α
<
1
T
h
_
α
∈
R
(
a
,
b
)
∈
R
2
a
<
b
∫
a
b
1
(
t
−
a
)
α
d
t
c
o
n
v
e
r
g
e
s
s
i
α
<
1
d
e
´
m
_
a
n
a
log
u
e
T
h
_
∫
0
1
ln
t
d
t
c
o
n
v
e
r
g
e
d
e
´
m
_
ln
C
∘
s
u
r
]
0
,
1
]
∀
x
∈
]
0
,
1
]
,
∫
x
1
ln
t
d
t
=
(
t
ln
t
−
t
)
x
1
=
−
1
−
x
ln
x
+
x
∫
x
1
ln
t
d
t
→
−
1
(
x
→
0
)
;
∫
0
1
ln
t
d
t
c
o
n
v
e
r
g
e
(
e
t
∫
0
1
ln
t
d
t
=
−
1
(
s
a
v
o
i
r
q
u
′
e
l
l
e
c
o
n
v
e
r
g
e
,
m
a
i
s
v
e
r
s
o
u
`
n
′
e
s
t
p
a
s
i
m
p
o
r
tan
t
)
)
{\displaystyle {\begin{aligned}&x\to \int _{x}^{1}{{\frac {1}{t^{\alpha }}}dt}\ admet\ une\ \lim ite\ \left(x{\overset {>}{\mathop {\to } }}\,0\right)\ ssi\ \alpha <1\\&\\&{\underline {Th}}\ \ {\begin{matrix}\alpha \in R\\\left(a,b\right)\in R{}^{\text{2}}\ \ a<b\\\end{matrix}}\\&\int _{a}^{b}{{\frac {1}{\left(t-a\right)^{\alpha }}}dt}\ converge\ ssi\ \alpha <1\\&\\&{\underline {d{\acute {e}}m}}\ ana\log ue\\&{\underline {Th}}\int _{0}^{1}{\ln t}dt\ converge\\&\\&{\underline {d{\acute {e}}m}}\ \ln \ C{}^{\circ }\ sur\ ]0,1]\\&\forall x\in ]0,1],\ \int _{x}^{1}{\ln tdt}=\left(t\ln t-t\right)_{x}^{1}=-1-x\ln x+x\\&\int _{x}^{1}{\ln tdt}\to -1\ \left(x\to 0\right);\ \int _{0}^{1}{\ln t\ dt}\ converge\ \left({\begin{aligned}&et\ \int _{0}^{1}{\ln tdt}=-1\ \\&\left(savoir\ qu'elle\ converge,\ mais\ vers\ o{\grave {u}}\ n'est\ pas\ impor\tan t\right)\\\end{aligned}}\right)\\\end{aligned}}}
Re
m
_
:
−
∞
≤
a
<
b
<
+
∞
S
o
i
t
f
:
]
a
,
b
]
→
K
c
o
n
t
i
n
u
e
p
a
r
m
o
r
c
e
a
u
x
∫
x
b
f
(
t
)
d
t
=
−
∫
−
x
−
b
f
(
−
u
)
d
u
=
∫
−
b
−
x
f
(
−
u
)
d
u
L
e
p
r
o
b
l
e
`
m
e
d
e
l
a
n
a
t
u
r
e
d
e
∫
a
b
f
(
t
)
d
t
s
e
r
a
m
e
`
n
e
a
`
c
e
l
u
i
d
e
l
a
n
a
t
u
r
e
d
e
∫
−
b
−
a
f
(
−
u
)
d
u
a
v
e
c
−
∞
<
−
b
<
−
a
≤
+
∞
(
c
f
1
e
r
c
a
s
p
a
r
a
g
r
a
p
h
e
1
)
L
e
s
t
h
e
´
n
o
n
c
e
´
e
s
d
a
n
s
l
e
c
a
d
r
e
d
u
p
a
r
a
g
r
a
p
h
e
1
s
′
e
´
t
e
n
d
e
n
t
a
u
c
a
s
d
u
p
a
r
a
g
r
a
p
h
e
2
(
s
a
n
s
mod
i
f
i
c
a
t
i
o
n
d
e
s
i
n
e
´
g
a
l
i
t
e
´
s
)
T
h
_
(
c
o
h
e
´
r
e
n
c
e
d
e
l
a
d
e
´
f
i
n
i
t
i
o
n
)
−
∞
<
a
<
b
<
+
∞
S
o
i
t
f
:
]
a
,
b
]
→
K
c
o
n
t
i
n
u
e
p
a
r
m
o
r
c
e
a
u
x
.
s
i
f
a
d
m
e
t
u
n
p
r
o
l
o
n
g
e
m
e
n
t
f
~
c
o
n
t
i
n
u
e
p
a
r
m
o
r
e
a
u
x
s
u
r
[
a
,
b
]
a
l
o
r
s
∫
a
b
f
(
t
)
d
t
c
o
n
v
e
r
g
e
e
t
∫
a
b
f
(
t
)
d
t
=
∫
[
a
,
b
]
f
~
(
t
)
d
t
{\displaystyle {\begin{aligned}&{\underline {\operatorname {Re} m}}:\ -\infty \leq a<b<+\infty \\&Soit\ f:\ ]a,b]\to K\ continue\ par\ morceaux\\&\int _{x}^{b}{f\left(t\right)dt}=-\int _{-x}^{-b}{f\left(-u\right)du}=\int _{-b}^{-x}{f\left(-u\right)du}\\&Le\ probl{\grave {e}}me\ de\ la\ nature\ de\ \int _{a}^{b}{f\left(t\right)dt}\ se\ ram{\grave {e}}ne\ {\grave {a}}\ celui\ de\ la\ nature\ de\ \int _{-b}^{-a}{f\left(-u\right)du}\ avec\ -\infty <-b<-a\leq +\infty \\&\left(cf\ 1^{er}\ cas\ paragraphe\ 1\right)\\&\\&Les\ th\ {\acute {e}}nonc{\acute {e}}es\ dans\ le\ cadre\ du\ paragraphe\ 1\\&s'{\acute {e}}tendent\ au\ cas\ du\ paragraphe\ 2\\&\left(sans\ {\bmod {i}}fication\ des\ in{\acute {e}}galit{\acute {e}}s\right)\\&\\&{\underline {Th}}\ \left(coh{\acute {e}}rence\ de\ la\ d{\acute {e}}finition\right)\\&-\infty <a<b<+\infty \\&\\&Soit\ f:]a,b]\to K\ continue\ par\ morceaux.\\&\\&si\ f\ admet\ un\ prolongement\ {\tilde {f}}\ continue\ par\ moreaux\ sur\ [a,b]\\&alors\ \int _{a}^{b}{f\left(t\right)dt}\ converge\ et\ \int _{a}^{b}{f\left(t\right)dt}=\int _{[a,b]}^{}{{\tilde {f}}\left(t\right)dt}\\\end{aligned}}}
3)Cas ]a,b[ où -inf < a < b < +inf
T
h
e
t
d
e
´
f
_
:
−
∞
≤
a
<
b
≤
+
∞
S
o
i
t
f
:
]
a
,
b
[
→
K
c
o
n
t
i
n
u
e
p
a
r
m
o
r
c
e
a
u
x
s
′
i
l
e
x
i
s
t
e
c
∈
]
a
,
b
[
t
e
l
q
u
e
∫
a
c
f
(
t
)
d
t
e
t
∫
c
b
f
(
t
)
d
t
c
o
n
v
e
r
g
e
n
t
a
l
o
r
s
∀
d
∈
]
a
,
b
[
,
∫
a
d
f
(
t
)
d
t
,
∫
d
b
f
(
t
)
d
t
c
o
n
v
e
r
g
e
n
t
,
∫
a
d
f
(
t
)
d
t
+
∫
d
b
f
(
t
)
d
t
=
∫
a
c
f
(
t
)
d
t
+
∫
c
b
f
(
t
)
d
t
o
n
d
i
t
q
u
e
∫
a
b
f
(
t
)
d
t
c
o
n
v
e
r
g
e
_
,
e
t
a
p
o
u
r
v
a
l
e
u
r
∫
a
c
f
(
t
)
d
t
+
∫
c
b
f
(
t
)
d
t
d
e
´
m
_
:
c
,
d
∈
]
a
,
b
[
∫
x
d
f
(
t
)
d
t
=
∫
x
c
f
(
t
)
d
t
+
∫
c
d
f
(
t
)
d
t
(
x
∈
]
a
,
b
[
)
∫
a
d
f
(
t
)
d
t
c
o
n
v
e
r
g
e
s
s
i
∫
a
c
f
(
t
)
d
t
c
o
n
v
e
r
g
e
E
n
c
a
s
d
e
c
o
n
v
e
r
g
e
n
c
e
∫
a
d
f
(
t
)
d
t
=
∫
a
c
f
(
t
)
d
t
+
∫
c
d
f
(
t
)
d
t
∫
d
y
f
(
t
)
d
t
=
∫
d
c
f
(
t
)
d
t
+
∫
c
y
f
(
t
)
d
t
(
y
∈
]
a
,
b
[
)
{\displaystyle {\begin{aligned}&{\underline {Th\ et\ d{\acute {e}}f}}:\\&-\infty \leq a<b\leq +\infty \\&Soit\ f:\ ]a,b[\to K\ continue\ par\ morceaux\\&s'il\ existe\ c\in ]a,b[\ tel\ que\ \int _{a}^{c}{f\left(t\right)dt}\ et\ \int _{c}^{b}{f\left(t\right)dt}\ convergent\\&alors\ \forall d\in ]a,b[,\ \int _{a}^{d}{f\left(t\right)dt},\ \int _{d}^{b}{f\left(t\right)dt}\ convergent,\ \\&\int _{a}^{d}{f\left(t\right)dt}+\int _{d}^{b}{f\left(t\right)dt}=\int _{a}^{c}{f\left(t\right)dt}+\int _{c}^{b}{f\left(t\right)dt}\\&on\ dit\ que\ \int _{a}^{b}{f\left(t\right)dt}\ {\underline {\ converge}},\ et\ a\ pour\ valeur\\&\int _{a}^{c}{f\left(t\right)dt}+\int _{c}^{b}{f\left(t\right)dt}\\&\\&{\underline {d{\acute {e}}m}}:\\&c,d\in ]a,b[\\&\int _{x}^{d}{f\left(t\right)dt}=\int _{x}^{c}{f\left(t\right)dt}+\int _{c}^{d}{f\left(t\right)dt}\ \ \left(x\in ]a,b[\right)\\&\int _{a}^{d}{f\left(t\right)dt}\ converge\ ssi\ \int _{a}^{c}{f\left(t\right)dt}\ converge\\&En\ cas\ de\ convergence\ \int _{a}^{d}{f\left(t\right)dt}=\int _{a}^{c}{f\left(t\right)dt}+\int _{c}^{d}{f\left(t\right)dt}\\&\int _{d}^{y}{f\left(t\right)dt}=\int _{d}^{c}{f\left(t\right)dt}+\int _{c}^{y}{f\left(t\right)dt}\ \ \left(y\in ]a,b[\right)\\\end{aligned}}}
∫
d
b
f
(
t
)
d
t
c
o
n
v
e
r
g
e
s
s
i
∫
c
b
f
(
t
)
d
t
c
o
n
v
e
r
g
e
E
n
c
a
s
d
e
c
o
n
v
e
r
g
e
n
c
e
∫
d
b
f
(
t
)
d
t
=
∫
d
c
f
(
t
)
d
t
+
∫
c
b
f
(
t
)
d
t
∫
a
d
f
(
t
)
d
t
+
∫
d
b
f
(
t
)
d
t
=
∫
a
c
f
(
t
)
d
t
+
+
+
∫
c
b
f
(
t
)
d
t
A
T
T
E
N
T
I
O
N
!
!
!
E
x
e
m
p
l
e
α
∈
R
_
∫
0
+
∞
1
t
α
d
t
∫
0
1
1
t
α
d
t
c
o
n
v
e
r
g
e
s
i
α
<
1
∫
1
+
∞
1
t
α
d
t
c
o
n
v
e
r
g
e
s
s
i
α
>
1
∀
α
,
∫
0
+
∞
1
t
α
d
t
d
i
v
e
r
g
e
{\displaystyle {\begin{aligned}&\int _{d}^{b}{f\left(t\right)dt}\ converge\ ssi\ \int _{c}^{b}{f\left(t\right)dt}\ converge\\&En\ cas\ de\ convergence\ \int _{d}^{b}{f\left(t\right)dt}=\int _{d}^{c}{f\left(t\right)dt}+\int _{c}^{b}{f\left(t\right)dt}\\&\\&\int _{a}^{d}{f\left(t\right)dt}+\int _{d}^{b}{f\left(t\right)dt}=\int _{a}^{c}{f\left(t\right)dt}+++\int _{c}^{b}{f\left(t\right)dt}\\&\\&ATTENTION\ !!!{\underline {Exemple\ \alpha \in R}}\\&\int _{0}^{+\infty }{{\frac {1}{t^{\alpha }}}dt}\\&\\&\int _{0}^{1}{{\frac {1}{t^{\alpha }}}dt}\ converge\ si\ \alpha <1\\&\\&\int _{1}^{+\infty }{{\frac {1}{t^{\alpha }}}dt}\ converge\ ssi\ \alpha >1\\&\\&\forall \alpha ,\ \int _{0}^{+\infty }{\frac {1}{t^{\alpha }}}dt\ diverge\\\end{aligned}}}
4) propriétés
T
h
_
−
∞
≤
a
<
b
≤
+
∞
S
o
i
t
I
u
n
int
e
r
v
a
l
l
e
d
′
e
x
t
r
e
´
m
i
t
e
´
s
a
,
b
L
e
s
f
o
n
c
t
i
o
n
s
c
o
n
t
i
n
u
e
s
p
a
r
m
o
r
c
e
a
u
x
s
u
r
I
,
a
`
v
a
l
e
u
r
s
d
a
n
s
K
,
d
o
n
t
l
′
int
e
´
g
r
a
l
e
s
u
r
I
e
s
t
c
o
n
v
e
r
g
e
n
t
e
,
f
o
r
m
e
n
t
u
n
K
−
e
s
p
a
c
e
v
e
c
t
o
r
i
e
l
.
f
→
∫
a
b
f
(
t
)
d
t
e
s
t
u
n
e
f
o
r
m
e
l
i
n
e
´
a
i
r
e
s
u
r
c
e
t
e
s
p
a
c
e
v
e
c
t
o
r
i
e
l
.
d
e
´
m
_
−
∞
≤
a
<
b
<
+
∞
;
I
=
]
a
,
b
]
,
p
a
r
e
x
e
m
p
l
e
.
E
=
{
f
:
I
→
K
c
o
n
t
i
n
u
e
p
a
r
m
o
r
e
a
u
x
}
F
=
{
f
:
I
→
K
c
o
n
t
i
n
u
e
p
a
r
m
o
r
e
a
u
x
t
e
l
s
q
u
e
∫
a
b
f
(
t
)
d
t
c
o
n
v
e
r
g
e
}
⊂
E
0
∈
F
∀
λ
∈
K
,
∀
(
f
,
g
)
∈
F
2
,
∀
x
∈
]
a
,
b
]
∫
x
b
(
λ
f
+
g
)
(
t
)
d
t
=
λ
∫
x
b
f
(
t
)
d
t
+
∫
x
b
g
(
t
)
d
t
d
′
a
p
r
e
`
s
l
e
s
t
h
g
e
´
n
e
´
r
a
u
x
s
u
r
l
e
s
lim
i
t
e
s
,
∫
a
b
(
λ
f
+
g
)
(
t
)
d
t
c
o
n
v
e
r
g
e
λ
f
+
g
∈
F
F
e
s
t
u
n
s
e
v
d
e
E
.
∫
a
b
(
λ
f
+
g
)
(
t
)
d
t
=
λ
∫
a
b
f
(
t
)
d
t
+
∫
a
b
g
(
t
)
d
t
{\displaystyle {\begin{aligned}&{\underline {Th}}\ -\infty \leq a<b\leq +\infty \\&Soit\ I\ un\ \operatorname {int} ervalle\ d'extr{\acute {e}}mit{\acute {e}}s\ a,b\\&Les\ fonctions\ continues\ par\ morceaux\ sur\ I,\ {\grave {a}}\ valeurs\ dans\ K,\ dont\ l'\operatorname {int} {\acute {e}}grale\ sur\ I\ est\ convergente,\ forment\\&un\ K-espace\ vectoriel.\\&f\to \int _{a}^{b}{f\left(t\right)dt}\ est\ une\ forme\ lin{\acute {e}}aire\ sur\ cet\ espace\ vectoriel.\\&{\underline {d{\acute {e}}m}}\ \ -\infty \leq a<b<+\infty \ \ ;\ I=]a,b]\ ,\ par\ exemple.\\&E=\left\{f:I\to K\ continue\ par\ moreaux\right\}\\&F=\left\{f:I\to K\ continue\ par\ moreaux\ tels\ que\ \int _{a}^{b}{f\left(t\right)dt}\ converge\right\}\subset E\\&\\&0\in F\\&\forall \lambda \in K,\ \forall \left(f,g\right)\in F{}^{\text{2}},\ \forall x\in ]a,b]\\&\int _{x}^{b}{\left(\lambda f+g\right)\left(t\right)dt}=\lambda \int _{x}^{b}{f\left(t\right)dt}+\int _{x}^{b}{g\left(t\right)dt}\\&d'apr{\grave {e}}s\ les\ th\ g{\acute {e}}n{\acute {e}}raux\ sur\ les\ \lim ites,\ \int _{a}^{b}{\left(\lambda f+g\right)\left(t\right)dt}\ converge\\&\lambda f+g\in F\\&F\ est\ un\ sev\ de\ E.\\&\int _{a}^{b}{\left(\lambda f+g\right)\left(t\right)dt}=\lambda \int _{a}^{b}{f\left(t\right)dt}+\int _{a}^{b}{g\left(t\right)dt}\\\end{aligned}}}
T
h
_
−
∞
≤
a
<
b
≤
+
∞
S
o
i
t
I
u
n
int
e
r
v
a
l
l
e
d
′
e
x
t
r
e
´
m
i
t
e
´
s
a
,
b
f
:
I
→
C
c
o
n
t
i
n
u
e
p
a
r
m
o
r
c
e
a
u
x
s
u
r
I
u
=
Re
f
,
v
=
Im
f
∫
a
b
f
(
t
)
d
t
c
o
n
v
e
r
g
e
s
s
i
∫
a
b
u
(
t
)
d
t
e
t
∫
a
b
v
(
t
)
d
t
c
o
n
v
e
r
g
e
n
t
.
E
n
c
a
s
d
e
c
o
n
v
e
r
g
e
n
c
e
,
∫
a
b
f
(
t
)
d
t
=
∫
a
b
u
(
t
)
d
t
+
i
∫
a
b
v
(
t
)
d
t
∫
a
b
f
(
t
)
¯
d
t
c
o
n
v
e
r
g
e
e
t
∫
a
b
f
(
t
)
¯
d
t
=
∫
a
b
f
(
t
)
d
t
¯
d
e
´
m
_
−
∞
<
a
<
b
≤
+
∞
,
I
=
[
a
,
b
[
p
a
r
e
x
e
m
p
l
e
∀
x
∈
[
a
,
b
[
,
∫
a
x
f
(
t
)
d
t
=
∫
a
x
u
(
t
)
d
t
+
i
∫
a
x
v
(
t
)
d
t
t
h
g
e
´
n
e
´
r
a
u
x
r
e
l
a
t
i
f
s
a
u
x
f
o
n
c
t
i
o
n
s
c
o
m
p
o
s
a
n
t
e
s
.
∫
a
x
f
(
t
)
¯
d
t
=
∫
a
x
f
(
t
)
d
t
¯
=
∫
a
x
u
(
t
)
d
t
−
i
∫
a
x
v
(
t
)
d
t
{\displaystyle {\begin{aligned}&{\underline {Th}}\ -\infty \leq a<b\leq +\infty \\&Soit\ I\ un\ \operatorname {int} ervalle\ d'extr{\acute {e}}mit{\acute {e}}s\ a,b\\&\\&f:I\to C\ continue\ par\ morceaux\ sur\ I\\&u=\operatorname {Re} f,\ v=\operatorname {Im} f\\&\int _{a}^{b}{f\left(t\right)dt}\ converge\ ssi\ \int _{a}^{b}{u\left(t\right)dt}\ et\ \int _{a}^{b}{v\left(t\right)dt}\ convergent.\\&\\&En\ cas\ de\ convergence,\\&\int _{a}^{b}{f\left(t\right)dt}=\int _{a}^{b}{u\left(t\right)dt}+i\int _{a}^{b}{v\left(t\right)dt}\\&\int _{a}^{b}{{\overline {f\left(t\right)}}dt}\ converge\ et\ \int _{a}^{b}{{\overline {f\left(t\right)}}dt}={\overline {\int _{a}^{b}{f\left(t\right)dt}}}\\&\\&{\underline {d{\acute {e}}m}}\ \ -\infty <a<b\leq +\infty ,\ I=[a,b[\ par\ exemple\\&\forall x\in [a,b[,\ \int _{a}^{x}{f\left(t\right)dt}=\int _{a}^{x}{u\left(t\right)dt}+i\int _{a}^{x}{v\left(t\right)dt}\\&\\&th\ g{\acute {e}}n{\acute {e}}raux\ relatifs\ aux\ fonctions\ composantes.\\&\int _{a}^{x}{{\overline {f\left(t\right)}}dt}={\overline {\int _{a}^{x}{f\left(t\right)dt}}}=\int _{a}^{x}{u\left(t\right)dt}-i\int _{a}^{x}{v\left(t\right)dt}\\\end{aligned}}}
C
o
n
v
e
n
t
i
o
n
s
_
:
a
∈
R
,
s
i
f
e
s
t
d
e
´
f
i
n
i
e
a
u
p
o
int
a
,
o
n
n
o
t
e
∫
a
a
f
(
t
)
d
t
=
0
−
∞
≤
a
<
b
≤
+
∞
f
:
]
a
,
b
[
→
K
c
o
n
t
i
n
u
e
p
a
r
m
o
r
e
a
u
x
t
e
l
s
q
u
e
∫
a
b
f
(
t
)
d
t
c
o
n
v
e
r
g
e
−
∫
a
b
f
(
t
)
d
t
e
s
t
n
o
t
e
´
e
∫
b
a
f
(
t
)
d
t
T
h
(
r
e
l
a
t
i
o
n
d
e
C
h
a
s
l
e
s
)
S
o
i
e
n
t
a
,
b
,
c
∈
R
¯
α
=
min
(
a
,
b
,
c
)
,
β
=
m
a
x
(
a
,
b
,
c
)
S
o
i
t
f
:
]
α
,
β
[
→
K
c
o
n
t
i
n
u
e
p
a
r
m
o
r
c
e
a
u
x
.
S
i
∫
α
β
f
(
t
)
d
t
c
o
n
v
e
r
g
e
,
a
l
o
r
s
∫
a
c
f
(
t
)
d
t
,
∫
c
b
f
(
t
)
d
t
,
∫
a
b
f
(
t
)
d
t
c
o
n
v
e
r
g
e
n
t
,
∫
a
b
f
(
t
)
d
t
=
∫
a
c
f
(
t
)
d
t
+
∫
c
b
f
(
t
)
d
t
d
e
´
m
_
:
−
∞
≤
c
≤
a
≤
b
≤
+
∞
p
a
r
e
x
e
m
p
l
e
P
a
r
h
y
p
o
t
h
e
`
s
e
,
∫
c
b
f
(
t
)
d
t
c
o
n
v
e
r
g
e
D
′
o
u
`
∫
c
a
f
(
t
)
d
t
,
∫
a
b
f
(
t
)
d
t
c
o
n
v
e
r
g
e
n
t
{\displaystyle {\begin{aligned}&{\underline {Conventions}}:\\&a\in R,\ si\ f\ est\ d{\acute {e}}finie\ au\ po\operatorname {int} \ a,\ on\ note\ \int _{a}^{a}{f\left(t\right)dt}=0\\&\\&-\infty \leq a<b\leq +\infty \\&f:]a,b[\to K\ continue\ par\ moreaux\ tels\ que\ \int _{a}^{b}{f\left(t\right)dt}\ converge\\&-\int _{a}^{b}{f\left(t\right)dt}\ est\ not{\acute {e}}e\ \int _{b}^{a}{f\left(t\right)dt}\\&\\&Th\ \left(\ relation\ de\ Chasles\right)\\&Soient\ a,b,c\in {\overline {R}}\ \ \alpha =\min \left(a,b,c\right),\ \beta =max\left(a,b,c\right)\\&Soit\ f:\ ]\alpha ,\beta [\to K\ continue\ par\ morceaux.\\&\\&Si\ \int _{\alpha }^{\beta }{f\left(t\right)dt}\ converge,\ alors\ \int _{a}^{c}{f\left(t\right)dt},\int _{c}^{b}{f\left(t\right)dt},\ \int _{a}^{b}{f\left(t\right)dt}\ convergent,\\&\int _{a}^{b}{f\left(t\right)dt}=\int _{a}^{c}{f\left(t\right)dt}+\int _{c}^{b}{f\left(t\right)dt}\\&{\underline {d{\acute {e}}m}}:\ -\infty \leq c\leq a\leq b\leq +\infty \ par\ exemple\\&Par\ hypoth{\grave {e}}se,\ \int _{c}^{b}{f\left(t\right)dt}\ converge\\&D'o{\grave {u}}\ \int _{c}^{a}{f\left(t\right)dt},\ \int _{a}^{b}{f\left(t\right)dt}\ convergent\\\end{aligned}}}
e
t
∫
c
b
f
(
t
)
d
t
=
∫
c
a
f
(
t
)
d
t
+
∫
a
b
f
(
t
)
d
t
∫
a
b
f
(
t
)
d
t
=
−
∫
c
a
f
(
t
)
d
t
+
∫
c
b
f
(
t
)
d
t
E
x
t
e
n
s
i
o
n
_
:
−
∞
≤
a
<
b
<
c
≤
+
∞
S
o
i
t
f
:
]
a
,
b
[
∪
]
b
,
c
[
→
K
c
o
n
t
i
n
u
e
p
a
r
m
o
r
c
e
a
u
x
s
u
r
]
a
,
b
[
e
t
]
b
,
c
[
.
S
i
∫
a
b
f
(
t
)
d
t
e
t
∫
b
c
f
(
t
)
d
t
c
o
n
v
e
r
g
e
n
t
,
a
l
o
r
s
p
a
r
c
o
n
v
e
n
t
i
o
n
o
n
d
i
t
q
u
e
∫
a
c
f
(
t
)
d
t
c
o
n
v
e
r
g
e
e
t
∫
a
c
f
(
t
)
d
t
=
∫
a
b
f
(
t
)
d
t
+
∫
b
c
f
(
t
)
d
t
E
x
:
_
f
(
t
)
=
{
e
−
1
t
2
s
i
−
1
≤
t
<
0
1
t
s
i
0
<
t
≤
1
f
c
o
n
t
i
n
u
e
p
a
r
m
o
r
e
a
u
x
s
u
r
[
−
1
,
0
[
,
s
u
r
]
0
,
1
]
f
(
t
)
→
0
(
t
→
<
0
)
{\displaystyle {\begin{aligned}&et\ \int _{c}^{b}{f\left(t\right)dt}=\int _{c}^{a}{f\left(t\right)dt}+\int _{a}^{b}{f\left(t\right)dt}\\&\int _{a}^{b}{f\left(t\right)dt}=-\int _{c}^{a}{f\left(t\right)dt}+\int _{c}^{b}{f\left(t\right)dt}\\&\\&{\underline {Extension}}:\ -\infty \leq a<b<c\leq +\infty \\&Soit\ f:]a,b[\cup ]b,c[\to K\ \ continue\ par\ morceaux\ sur\ ]a,b[\ et\ ]b,c[.\\&Si\ \int _{a}^{b}{f\left(t\right)dt}\ et\ \int _{b}^{c}{f\left(t\right)dt}\ convergent,\ alors\ par\ convention\\&on\ dit\ que\ \int _{a}^{c}{f\left(t\right)dt}\ converge\ et\ \int _{a}^{c}{f\left(t\right)dt}=\int _{a}^{b}{f\left(t\right)dt}+\int _{b}^{c}{f\left(t\right)dt}\\&\\&{\underline {Ex:}}\ f\left(t\right)=\left\{{\begin{aligned}&e^{-{\frac {1}{t{}^{\text{2}}}}}\ si\ -1\leq t<0\\&{\frac {1}{\sqrt {t}}}\ si\ 0<t\leq 1\\\end{aligned}}\right.\\&f\ continue\ par\ moreaux\ sur\ [-1,0[,\ sur\ ]0,1]\\&f\left(t\right)\to 0\ \left(t{\overset {<}{\mathop {\to } }}\,0\right)\\\end{aligned}}}
f
s
e
p
r
o
l
o
n
g
e
e
n
u
n
e
f
o
n
c
t
i
o
n
c
o
n
t
i
n
u
e
s
u
r
[
−
1
,
0
]
D
o
n
c
∫
−
1
0
f
(
t
)
d
t
c
o
n
v
e
r
g
e
.
1
2
<
1
:
∫
0
1
f
(
t
)
d
t
=
∫
0
1
1
t
d
t
c
o
n
v
e
r
g
e
D
′
o
u
`
∫
−
1
1
f
(
t
)
d
t
c
o
n
v
e
r
g
e
(
a
l
o
r
s
q
u
e
f
(
t
)
→
t
→
>
0
0
)
T
h
(
int
e
´
g
r
a
t
i
o
n
p
a
r
p
a
r
t
i
e
s
)
_
−
∞
<
a
<
b
≤
+
∞
S
o
i
e
n
t
u
,
v
:
[
a
,
b
[
→
K
c
o
n
t
i
n
u
e
s
s
u
r
[
a
,
b
[
e
t
d
e
c
l
a
s
s
e
C
1
p
a
r
m
o
r
e
a
u
x
s
u
r
[
a
,
b
[
∀
x
∈
[
a
,
b
[
,
∫
a
x
u
′
(
t
)
v
(
t
)
d
t
=
[
u
(
t
)
v
(
t
)
]
a
x
−
∫
a
x
u
(
t
)
v
′
(
t
)
d
t
s
i
d
e
u
x
d
e
s
exp
r
e
s
s
i
o
n
s
o
n
t
u
n
e
lim
i
t
e
d
a
n
s
K
l
o
r
s
q
u
e
x
→
<
b
a
l
o
r
s
l
a
3
e
a
u
s
s
i
e
t
∫
a
b
u
′
(
t
)
v
(
t
)
d
t
=
lim
x
→
<
b
(
u
(
x
)
v
(
x
)
)
−
u
(
a
)
v
(
a
)
−
∫
a
b
u
(
t
)
v
′
(
t
)
d
t
d
e
´
m
_
t
h
g
e
´
n
e
´
r
a
u
x
s
u
r
l
e
s
lim
i
t
e
s
{\displaystyle {\begin{aligned}&f\ se\ prolonge\ en\ une\ fonction\ continue\ sur\ [-1,0]\\&Donc\ \int _{-1}^{0}{f\left(t\right)dt}\ converge.\\&\\&{\frac {1}{2}}<1:\ \int _{0}^{1}{f\left(t\right)dt}=\int _{0}^{1}{{\frac {1}{\sqrt {t}}}dt}\ converge\\&D'o{\grave {u}}\ \int _{-1}^{1}{f\left(t\right)dt}\ converge\ \left(alors\ que\ f\left(t\right){\underset {t{\overset {>}{\mathop {\to } }}\,0}{\mathop {\to } }}\,0\right)\\&\\&{\underline {Th\ \left(\operatorname {int} {\acute {e}}gration\ par\ parties\right)}}\\&-\infty <a<b\leq +\infty \\&Soient\ u,v:\ [a,b[\to K\ continues\ sur\ [a,b[\ et\ de\ classe\ C^{1}\ par\ moreaux\ sur\ [a,b[\\&\forall x\in [a,b[,\ \int _{a}^{x}{u'\left(t\right)v\left(t\right)dt}=\left[u\left(t\right)v\left(t\right)\right]_{a}^{x}-\int _{a}^{x}{u\left(t\right)v'\left(t\right)dt}\\&si\ deux\ des\ \exp ressions\ ont\ une\ \lim ite\ dans\ K\ lorsque\ x{\overset {<}{\mathop {\to } }}\,b\\&alors\ la\ 3^{e}\ aussi\ et\\&\int _{a}^{b}{u'\left(t\right)v\left(t\right)dt}={\underset {x{\overset {<}{\mathop {\to } }}\,b}{\mathop {\lim } }}\,\left(u\left(x\right)v\left(x\right)\right)-u\left(a\right)v\left(a\right)-\int _{a}^{b}{u\left(t\right)v'\left(t\right)dt}\\&\\&{\underline {d{\acute {e}}m}}\ th\ g{\acute {e}}n{\acute {e}}raux\ sur\ les\ \lim ites\\\end{aligned}}}
A
T
T
E
N
T
I
O
N
a
∈
R
,
f
:
[
a
,
+
∞
[
→
K
c
o
n
t
i
n
u
e
p
a
r
m
o
r
c
e
a
u
x
1
t
→
0
(
t
→
+
∞
)
m
a
i
s
∫
1
+
∞
1
t
d
t
d
i
v
e
r
g
e
{\displaystyle {\begin{aligned}&ATTENTION\ a\in R,\ f:[a,+\infty [\to K\ continue\ par\ morceaux\\&{\frac {1}{t}}\to 0\ \left(t\to +\infty \right)\ mais\ \int _{1}^{+\infty }{{\frac {1}{t}}dt}\ diverge\\\end{aligned}}}
S
i
∫
a
+
∞
f
(
t
)
d
t
c
o
n
v
e
r
g
e
e
t
s
i
∃
ℓ
∈
R
¯
,
f
(
t
)
→
(
t
→
+
∞
)
ℓ
a
l
o
r
s
ℓ
=
0
d
e
´
m
_
s
i
ℓ
≠
0
,
o
n
p
e
u
t
sup
p
o
s
e
r
ℓ
∈
R
∗
+
∪
{
+
∞
}
(
q
u
i
t
t
e
a
`
c
h
a
n
g
e
r
f
e
n
−
f
)
{\displaystyle {\begin{aligned}&Si\ \int _{a}^{+\infty }{f\left(t\right)dt}\ converge\ et\ si\ \exists \ell \in {\overline {R}},\ f\left(t\right){\underset {\left(t\to +\infty \right)}{\mathop {\to } }}\,\ell \\&alors\ \ell =0\\&\\&{\underline {d{\acute {e}}m}}\\&si\ \ell \neq 0,\ on\ peut\ \sup poser\ \ell \in R*_{+}\cup \left\{+\infty \right\}\ \left(quitte\ {\grave {a}}\ changer\ f\ en\ -f\right)\\\end{aligned}}}
∃
k
>
0
,
∃
A
≥
a
,
∀
x
∈
[
A
,
+
∞
[
,
f
(
x
)
≥
k
∀
x
≥
A
,
∫
A
x
f
(
t
)
d
t
≥
∫
A
x
k
=
k
(
x
−
a
)
∫
A
x
f
(
t
)
d
t
→
+
∞
(
x
→
+
∞
)
,
o
r
∫
A
+
∞
f
(
t
)
d
t
c
o
n
v
e
r
g
e
D
′
o
u
`
ℓ
=
0
{\displaystyle {\begin{aligned}&\exists k>0,\ \exists A\geq a,\ \forall x\in [A,+\infty [,\ f\left(x\right)\geq k\\&\\&\forall x\geq A,\ \int _{A}^{x}{f\left(t\right)dt}\geq \int _{A}^{x}{k}=k\left(x-a\right)\\&\int _{A}^{x}{f\left(t\right)dt}\to +\infty \ \left(x\to +\infty \right),\ or\ \int _{A}^{+\infty }{f\left(t\right)dt}\ converge\\&D'o{\grave {u}}\ \ell =0\\\end{aligned}}}
S
i
∫
a
+
∞
f
(
t
)
d
t
c
o
n
v
e
r
g
e
,
n
e
p
a
s
e
n
d
e
´
d
u
i
r
e
_
q
u
e
f
(
t
)
→
0
(
t
→
+
∞
)
{\displaystyle {\begin{aligned}&Si\ \int _{a}^{+\infty }{f\left(t\right)dt}\ converge,\ {\underline {ne\ pas\ en\ d{\acute {e}}duire}}\\&que\ f\left(t\right)\to 0\ \left(t\to +\infty \right)\\\end{aligned}}}
1) th généraux
T
h
_
−
∞
<
a
<
b
≤
+
∞
S
o
i
t
f
:
[
a
,
b
[
→
R
c
o
n
t
i
n
u
e
p
a
r
m
o
r
c
e
a
u
x
,
p
o
s
i
t
i
v
e
A
l
o
r
s
F
:
[
a
,
b
[
→
R
x
→
∫
a
x
f
(
t
)
d
t
e
s
t
c
r
o
i
s
s
a
n
t
e
∫
a
b
f
(
t
)
d
t
c
o
n
v
e
r
g
e
s
s
i
F
e
s
t
m
a
j
o
r
e
´
e
D
a
n
s
c
e
c
a
s
,
∫
a
b
f
(
t
)
d
t
=
lim
x
→
<
b
F
(
x
)
=
S
u
p
x
∈
[
a
,
b
[
∫
a
x
f
(
t
)
d
t
d
e
´
m
_
a
≤
x
<
y
<
b
=>
F
(
y
)
−
F
(
x
)
=
∫
x
y
f
(
t
)
d
t
≥
0
F
c
r
o
i
s
s
a
n
t
e
s
u
r
[
a
,
b
[
∫
a
b
f
(
t
)
d
t
c
o
n
v
e
r
g
e
s
s
i
F
a
d
m
e
t
u
n
e
lim
i
t
e
f
i
n
i
e
e
n
b
∫
a
b
f
(
t
)
d
t
c
o
n
v
e
r
g
e
s
s
i
F
e
s
t
m
a
j
o
r
e
´
e
s
u
r
[
a
,
b
[
s
i
F
m
a
j
o
r
e
´
e
,
lim
x
→
<
b
F
(
x
)
=
S
u
p
[
a
,
b
[
F
{\displaystyle {\begin{aligned}&{\underline {Th}}\ -\infty <a<b\leq +\infty \\&\\&Soit\ f:[a,b[\to R\ continue\ par\ morceaux,\ positive\\&\\&Alors\ F:{\begin{matrix}[a,b[\to R\\x\to \int _{a}^{x}{f\left(t\right)dt}\\\end{matrix}}\ est\ croissante\\&\int _{a}^{b}{f\left(t\right)dt}\ converge\ ssi\ F\ est\ major{\acute {e}}e\\&Dans\ ce\ cas,\ \int _{a}^{b}{f\left(t\right)dt}={\underset {x{\overset {<}{\mathop {\to } }}\,b}{\mathop {\lim } }}\,F\left(x\right)={\underset {x\in [a,b[}{\mathop {Sup} }}\,\int _{a}^{x}{f\left(t\right)dt}\\&\\&{\underline {d{\acute {e}}m}}\\&a\leq x<y<b\ =>\ F\left(y\right)-F\left(x\right)=\int _{x}^{y}{f\left(t\right)dt}\geq 0\\&F\ croissante\ sur\ [a,b[\\&\int _{a}^{b}{f\left(t\right)dt}\ converge\ ssi\ F\ admet\ une\ \lim ite\ finie\ en\ b\\&\int _{a}^{b}{f\left(t\right)dt}\ converge\ ssi\ F\ est\ major{\acute {e}}e\ sur\ [a,b[\\&si\ F\ major{\acute {e}}e,\ {\underset {x{\overset {<}{\mathop {\to } }}\,b}{\mathop {\lim } }}\,F\left(x\right)={\underset {[a,b[}{\mathop {Sup} }}\,F\\\end{aligned}}}
T
h
_
−
∞
≤
a
<
b
<
+
∞
S
o
i
t
f
:
]
a
,
b
]
→
R
c
o
n
t
i
n
u
e
p
a
r
m
o
r
c
e
a
u
x
,
p
o
s
i
t
i
v
e
.
A
l
o
r
s
F
:
]
a
,
b
]
→
R
x
→
∫
x
b
f
(
t
)
d
t
e
s
t
d
e
´
c
r
o
i
s
s
a
n
t
e
{\displaystyle {\begin{aligned}&{\underline {Th}}\ -\infty \leq a<b<+\infty \\&Soit\ f:]a,b]\to R\ continue\ par\ morceaux,\ positive.\\&Alors\ F:{\begin{matrix}]a,b]\to R\\x\to \int _{x}^{b}{f\left(t\right)dt}\\\end{matrix}}\ est\ d{\acute {e}}croissante\\\end{aligned}}}
∫
a
b
f
(
t
)
d
t
c
o
n
v
e
r
g
e
s
s
i
F
e
s
t
m
a
j
o
r
e
´
e
s
u
r
]
a
,
b
]
D
a
,
s
c
e
c
a
s
,
∫
a
b
f
(
t
)
d
t
=
lim
x
→
>
a
F
(
x
)
=
S
u
p
x
∈
]
a
,
b
]
F
(
x
)
d
e
´
m
_
:
a
<
x
<
y
≤
b
=>
F
(
y
)
−
F
(
x
)
=
∫
y
x
f
(
t
)
d
t
≤
0
{\displaystyle {\begin{aligned}&\int _{a}^{b}{f\left(t\right)dt}\ converge\ ssi\ F\ est\ major{\acute {e}}e\ sur\ ]a,b]\\&\\&Da,s\ ce\ cas,\ \int _{a}^{b}{f\left(t\right)dt}={\underset {x{\overset {>}{\mathop {\to } }}\,a}{\mathop {\lim } }}\,F\left(x\right)={\underset {x\in ]a,b]}{\mathop {Sup} }}\,F\left(x\right)\\&\\&{\underline {d{\acute {e}}m}}:\\&a<x<y\leq b=>F\left(y\right)-F\left(x\right)=\int _{y}^{x}{f\left(t\right)dt}\leq 0\\\end{aligned}}}
F
d
e
´
c
r
o
i
s
s
a
n
t
e
t
h
.
lim
i
t
e
d
′
u
n
e
f
o
n
c
t
i
o
n
m
o
n
o
t
o
n
e
{\displaystyle {\begin{aligned}&F\ d{\acute {e}}croissante\\&th.\ \lim ite\ d'une\ fonction\ monotone\\\end{aligned}}}
C
o
n
s
e
´
q
u
e
n
c
e
_
:
D
a
n
s
l
e
s
t
h
q
u
i
s
u
i
v
e
n
t
,
o
n
p
o
u
r
r
a
r
e
m
p
l
a
c
e
r
[
a
,
b
[
p
a
r
u
n
int
e
r
v
a
l
l
e
]
c
,
d
]
s
a
n
s
mod
i
f
i
e
r
l
e
s
i
n
e
´
g
a
l
i
t
e
´
s
d
a
n
s
l
e
s
c
o
n
c
l
u
s
i
o
n
s
.
T
h
_
−
∞
<
a
<
b
≤
+
∞
S
i
f
:
[
a
,
b
[
→
R
c
o
n
t
i
n
u
e
p
a
r
m
o
r
c
e
a
u
x
,
e
s
t
p
o
s
i
t
i
v
e
s
i
∫
a
b
f
(
t
)
d
t
c
o
n
v
e
r
g
e
,
a
l
o
r
s
∫
a
b
f
(
t
)
d
t
≥
0
d
e
´
m
_
F
(
x
)
=
∫
a
x
f
≥
0
(
x
∈
[
a
,
b
[
)
∫
a
b
f
(
t
)
d
t
=
lim
x
→
b
<
{\displaystyle {\begin{aligned}&{\underline {Cons{\acute {e}}quence}}:\\&Dans\ les\ th\ qui\ suivent,\ on\ pourra\ remplacer\ [a,b[\\&par\ un\ \operatorname {int} ervalle\ ]c,d]\ sans\ {\bmod {i}}fier\ les\ in{\acute {e}}galit{\acute {e}}s\ dans\ les\ conclusions.\\&\\&{\underline {Th}}\ -\infty <a<b\leq +\infty \\&\\&Si\ f:[a,b[\to R\ continue\ par\ morceaux,\ est\ positive\\&si\ \int _{a}^{b}{f\left(t\right)dt}\ converge,\\&alors\ \int _{a}^{b}{f\left(t\right)dt}\geq 0\\&\\&{\underline {d{\acute {e}}m}}\\&F\left(x\right)=\int _{a}^{x}{f}\geq 0\ \left(x\in [a,b[\right)\\&\int _{a}^{b}{f\left(t\right)dt}={\underset {{\overset {<}{\mathop {x\to b} }}\,}{\mathop {\lim } }}\,\\\end{aligned}}}
T
h
_
−
∞
<
a
<
b
≤
+
∞
S
i
f
:
[
a
,
b
[
→
R
e
s
t
c
o
n
t
i
n
u
e
e
t
p
o
s
i
t
i
v
e
,
S
i
∫
a
b
f
(
t
)
d
t
c
o
n
v
e
r
g
e
,
s
i
∫
a
b
f
(
t
)
d
t
=
0
a
l
o
r
s
f
=
0
d
e
´
m
_
∀
x
∈
[
a
,
b
[
,
F
(
x
)
=
∫
a
x
f
(
t
)
d
t
≥
0
∀
x
∈
[
a
,
b
[
,
0
≤
F
(
x
)
≤
S
u
p
[
a
,
b
[
F
=
∫
a
b
f
(
t
)
d
t
=
0
F
=
0
∀
t
∈
[
a
,
b
[
,
f
=
F
′
=
0
T
h
_
d
e
c
o
m
p
a
r
a
i
s
o
n
d
e
s
f
o
n
c
t
i
o
n
s
p
o
s
i
t
i
v
e
s
−
∞
<
a
<
b
≤
+
∞
S
o
i
e
n
t
f
,
g
:
[
a
,
b
[
→
R
c
o
n
t
i
n
u
e
s
p
a
r
m
o
r
c
e
a
u
x
,
t
e
l
l
e
s
q
u
e
0
≤
f
≤
g
s
i
∫
a
b
g
(
t
)
d
t
c
o
n
v
e
r
g
e
,
∫
a
b
f
(
t
)
d
t
c
o
n
v
e
r
g
e
e
t
∫
a
b
f
≤
∫
a
b
g
S
i
∫
a
b
f
(
t
)
d
t
d
i
v
e
r
g
e
,
∫
a
b
g
(
t
)
d
t
d
i
v
e
r
g
e
.
{\displaystyle {\begin{aligned}&{\underline {Th}}\ -\infty <a<b\leq +\infty \\&Si\ f:[a,b[\to R\ est\ continue\ et\ positive,\\&Si\ \int _{a}^{b}{f\left(t\right)dt}\ converge,\ si\ \int _{a}^{b}{f\left(t\right)dt}=0\\&alors\ f=0\\&\\&{\underline {d{\acute {e}}m}}\\&\forall x\in [a,b[,\ F\left(x\right)=\int _{a}^{x}{f\left(t\right)dt}\geq 0\\&\forall x\in [a,b[,\ 0\leq F\left(x\right)\leq {\underset {[a,b[}{\mathop {Sup} }}\,F=\int _{a}^{b}{f\left(t\right)dt}=0\\&F=0\\&\forall t\in [a,b[\ ,\ f=F'=0\\&\\&{\underline {Th}}\ de\ comparaison\ des\ fonctions\ positives\\&-\infty <a<b\leq +\infty \\&Soient\ f,g:[a,b[\to R\ continues\ par\ morceaux,\ telles\ que\\&0\leq f\leq g\\&si\ \int _{a}^{b}{g\left(t\right)dt}\ converge,\ \int _{a}^{b}{f\left(t\right)dt}\ converge\ et\ \int _{a}^{b}{f}\leq \int _{a}^{b}{g}\\&Si\ \int _{a}^{b}{f\left(t\right)dt}\ diverge,\ \int _{a}^{b}{g\left(t\right)dt}\ diverge.\\\end{aligned}}}
d
e
´
m
_
:
∀
x
∈
[
a
,
b
[
,
F
(
x
)
=
∫
a
x
f
(
t
)
d
t
,
G
(
x
)
=
∫
a
x
g
(
t
)
d
t
∀
x
∈
[
a
,
b
[
,
F
(
x
)
≤
G
(
x
)
sup
p
o
s
o
n
s
q
u
e
∫
a
b
g
(
t
)
d
t
c
o
n
v
e
r
g
e
∀
x
∈
[
a
,
b
[
,
G
(
x
)
≤
S
u
p
[
a
,
b
[
G
=
∫
a
b
g
(
t
)
d
t
F
m
a
j
o
r
e
´
e
s
u
r
[
a
,
b
[
∫
a
b
f
(
t
)
d
t
c
o
n
v
e
r
g
e
∫
a
b
f
(
t
)
d
t
=
S
u
p
[
a
,
b
[
F
≤
∫
a
b
g
(
t
)
d
t
E
x
e
m
p
l
e
_
∫
−
∞
0
e
t
sin
2
t
d
t
c
o
n
v
e
r
g
e
f
:
t
→
e
t
sin
2
t
c
o
n
t
i
n
u
e
p
o
s
i
t
i
v
e
s
u
r
R
−
∀
t
∈
R
−
,
f
(
t
)
≤
e
t
∀
x
,
∫
x
0
e
t
d
t
=
1
−
e
x
1
−
e
x
→
1
(
x
→
−
∞
)
∫
−
∞
0
e
t
d
t
c
o
n
v
e
r
g
e
d
′
o
u
`
∫
−
∞
0
f
(
t
)
d
t
c
o
n
v
e
r
g
e
{\displaystyle {\begin{aligned}&{\underline {d{\acute {e}}m}}:\ \forall x\in [a,b[,\ F\left(x\right)=\int _{a}^{x}{f\left(t\right)dt},\ G\left(x\right)=\int _{a}^{x}{g\left(t\right)dt}\\&\forall x\in [a,b[,\ F\left(x\right)\leq G\left(x\right)\\&\sup posons\ que\ \int _{a}^{b}{g\left(t\right)dt}\ converge\\&\forall x\in [a,b[,\ G\left(x\right)\leq {\underset {[a,b[}{\mathop {Sup} }}\,G=\int _{a}^{b}{g\left(t\right)dt}\\&F\ major{\acute {e}}e\ sur\ [a,b[\\&\int _{a}^{b}{f\left(t\right)dt}\ converge\\&\int _{a}^{b}{f\left(t\right)dt}={\underset {[a,b[}{\mathop {Sup} }}\,F\leq \int _{a}^{b}{g\left(t\right)dt}\\&{\underline {Exemple}}\ \int _{-\infty }^{0}{e^{t}\sin {}^{\text{2}}tdt}\ converge\\&\\&f:t\to e^{t}\sin {}^{\text{2}}t\ continue\ positive\ sur\ R^{-}\\&\forall t\in R^{-},\ f\left(t\right)\leq e^{t}\\&\forall x,\ \int _{x}^{0}{e^{t}dt}=1-e^{x}\\&1-e^{x}\to 1\ \left(x\to -\infty \right)\\&\int _{-\infty }^{0}{e^{t}dt}\ converge\\&d'o{\grave {u}}\ \int _{-\infty }^{0}{f\left(t\right)dt}\ \ converge\\\end{aligned}}}
T
h
_
−
∞
<
a
<
b
≤
+
∞
S
o
i
e
t
n
f
,
g
:
[
a
,
b
[
→
R
c
o
n
t
i
n
u
e
p
a
r
m
o
r
e
a
u
x
,
p
o
s
i
t
i
v
e
s
s
i
f
=
b
O
(
g
)
a
l
o
r
s
l
a
c
o
n
v
e
r
g
e
n
c
e
d
e
∫
a
b
g
(
t
)
d
t
i
n
d
u
i
t
l
a
c
o
n
v
e
r
g
e
n
c
e
d
e
∫
a
b
f
(
t
)
d
t
l
a
d
i
v
e
r
g
e
n
c
e
d
e
∫
a
b
f
(
t
)
d
t
i
n
d
u
i
t
l
a
d
i
v
e
r
g
e
n
c
e
d
e
∫
a
b
g
(
t
)
d
t
d
e
´
m
_
f
=
b
O
(
g
)
∃
M
>
0
,
∃
c
∈
[
a
,
b
[
,
∀
t
∈
[
c
,
b
[
,
0
≤
f
(
t
)
≤
M
g
(
t
)
t
h
d
e
c
o
m
p
a
r
a
i
s
o
n
:
s
i
∫
c
b
g
(
t
)
d
t
c
o
n
v
e
r
g
e
,
∫
c
b
f
(
t
)
d
t
c
o
n
v
e
r
g
e
.
{\displaystyle {\begin{aligned}&{\underline {Th}}\ -\infty <a<b\leq +\infty \\&Soietn\ f,g:[a,b[\to R\ continue\ par\ moreaux,\ positives\\&si\ f={}_{b}O\left(g\right)\\&alors\ la\ convergence\ de\ \int _{a}^{b}{g\left(t\right)dt}\ induit\ la\ convergence\ de\ \int _{a}^{b}{f\left(t\right)dt}\\&la\ divergence\ de\ \int _{a}^{b}{f\left(t\right)dt}\ induit\ la\ divergence\ de\ \int _{a}^{b}{g\left(t\right)dt}\\&{\underline {d{\acute {e}}m}}\ f=_{b}O\left(g\right)\\&\exists M>0,\ \exists c\in [a,b[,\ \forall t\in [c,b[,\ 0\leq f\left(t\right)\leq Mg\left(t\right)\\&th\ de\ comparaison:\ si\ \int _{c}^{b}{g\left(t\right)dt}\ converge,\ \int _{c}^{b}{f\left(t\right)dt}\ converge.\\&\\\end{aligned}}}
s
i
u
∈
{
f
,
g
}
:
∫
c
b
u
(
t
)
d
t
c
o
n
v
e
r
g
e
s
s
i
∫
a
b
u
(
t
)
d
t
c
o
n
v
e
r
g
e
T
h
_
−
∞
<
a
<
b
≤
+
∞
S
o
i
e
n
t
f
,
g
:
[
a
,
b
[
→
R
c
o
n
t
i
n
u
e
s
p
a
r
m
o
r
c
e
a
u
x
,
p
o
s
i
t
i
v
e
s
.
s
i
f
(
t
)
~
b
g
(
t
)
a
l
o
r
s
∫
a
b
f
(
t
)
d
t
e
t
∫
a
b
g
(
t
)
d
t
s
o
n
t
d
e
m
e
^
m
e
n
a
t
u
r
e
d
e
´
m
_
f
(
t
)
=
b
O
(
g
(
t
)
)
,
g
(
t
)
=
b
O
(
f
(
t
)
)
c
f
t
h
p
r
e
´
c
e
´
d
e
n
t
{\displaystyle {\begin{aligned}&\\&si\ u\in \left\{f,g\right\}:\ \int _{c}^{b}{u\left(t\right)dt}\ converge\ ssi\ \int _{a}^{b}{u\left(t\right)dt}\ converge\\&\\&{\underline {Th}}\ \ -\infty <a<b\leq +\infty \\&Soient\ f,g:[a,b[\to R\ continues\ par\ morceaux,\ positives.\\&si\ f\left(t\right){\underset {b}{\mathop {\tilde {\ }} }}\,g\left(t\right)\\&alors\ \int _{a}^{b}{f\left(t\right)dt}\ et\ \int _{a}^{b}{g\left(t\right)dt}\ sont\ de\ m{\hat {e}}me\ nature\\&\\&{\underline {d{\acute {e}}m}}\ f\left(t\right)=_{b}O\left(g\left(t\right)\right),\ g\left(t\right)=_{b}O\left(f\left(t\right)\right)\\&cf\ th\ pr{\acute {e}}c{\acute {e}}dent\\\end{aligned}}}
e
x
e
m
p
l
e
_
f
(
t
)
=
|
ln
t
|
t
2
+
1
:
n
a
t
u
r
e
d
e
∫
0
+
∞
f
(
t
)
d
t
?
f
C
∘
,
p
o
s
i
t
i
v
e
s
u
r
[
0
,
+
∞
[
f
(
t
)
~
0
|
ln
t
|
=
−
ln
t
∫
0
1
ln
t
d
t
c
o
n
v
e
r
g
e
∫
0
1
f
(
t
)
d
t
c
o
n
v
e
r
g
e
(
t
h
p
r
e
´
c
e
´
d
e
n
t
)
f
(
t
)
~
+
∞
ln
t
t
2
{\displaystyle {\begin{aligned}&{\underline {exemple}}\\&f\left(t\right)={\frac {\left|\ln t\right|}{t{}^{\text{2}}+1}}:\ nature\ de\ \int _{0}^{+\infty }{f\left(t\right)dt}\ ?\\&f\ C{}^{\circ }\ ,\ positive\ sur\ \ [0,+\infty [\\&f\left(t\right){\underset {0}{\mathop {\tilde {\ }} }}\,\left|\ln t\right|=-\ln t\\&\int _{0}^{1}{\ln tdt}\ converge\\&\int _{0}^{1}{f\left(t\right)dt}\ converge\ \left(th\ pr{\acute {e}}c{\acute {e}}dent\right)\\&f\left(t\right){\underset {+\infty }{\mathop {\tilde {\ }} }}\,{\frac {\ln t}{t{}^{\text{2}}}}\\\end{aligned}}}
t
3
2
ln
t
t
2
=
ln
t
t
→
0
(
t
→
+
∞
)
ln
t
t
2
=
+
∞
o
(
1
t
3
2
)
∫
1
+
∞
1
t
3
2
d
t
c
o
n
v
e
r
g
e
(
3
2
>
1
)
t
h
d
e
c
o
m
p
a
r
a
i
s
o
n
d
e
s
f
o
n
c
t
i
o
n
s
p
o
s
i
t
i
v
e
s
:
∫
1
+
∞
f
(
t
)
d
t
c
o
n
v
e
r
g
e
∫
0
+
∞
f
(
t
)
d
t
c
o
n
v
e
r
g
e
{\displaystyle {\begin{aligned}&t^{\frac {3}{2}}{\frac {\ln t}{t{}^{\text{2}}}}={\frac {\ln t}{\sqrt {t}}}\to 0\ \left(t\to +\infty \right)\\&{\frac {\ln t}{t{}^{\text{2}}}}{\underset {+\infty }{\mathop {=} }}\,o\left({\frac {1}{t^{\frac {3}{2}}}}\right)\\&\\&\int _{1}^{+\infty }{{\frac {1}{t^{\frac {3}{2}}}}dt}\ converge\ \left({\frac {3}{2}}>1\right)\\&th\ de\ comparaison\ des\ fonctions\ positives:\\&\int _{1}^{+\infty }{f\left(t\right)dt}\ converge\\&\int _{0}^{+\infty }{f\left(t\right)dt}\ converge\\\end{aligned}}}