Interférences de deux ondes obtenues par division du front d'onde
modifier
τ
1
≈
τ
2
{\displaystyle \tau _{1}\approx \tau _{2}}
S émet une onde sphérique d'amplitude
A
=
A
0
e
j
ω
t
{\displaystyle {\mathcal {A}}={\mathcal {A}}_{0}e^{j\omega t}}
Par un dispositif approprié, on récupère deux ondes
A
1
(
S
)
=
A
0
e
j
ω
t
{\displaystyle {\mathcal {A}}_{1}(S)={\mathcal {A}}_{0}e^{j\omega t}}
A
2
(
S
)
=
A
0
e
j
ω
t
{\displaystyle {\mathcal {A}}_{2}(S)={\mathcal {A}}_{0}e^{j\omega t}}
On veut déterminer
A
(
M
)
{\displaystyle {\mathcal {A}}(M)}
A
1
(
M
,
t
)
=
A
0
(
S
,
t
−
τ
1
)
=
A
0
e
j
ω
(
t
−
τ
1
)
{\displaystyle {\mathcal {A}}_{1}(M,t)={\mathcal {A}}_{0}(S,t-\tau _{1})={\mathcal {A}}_{0}e^{j\omega (t-\tau _{1})}}
A
2
(
M
,
t
)
=
A
0
(
S
,
t
−
τ
2
)
=
A
0
e
j
ω
(
t
−
τ
2
)
{\displaystyle {\mathcal {A}}_{2}(M,t)={\mathcal {A}}_{0}(S,t-\tau _{2})={\mathcal {A}}_{0}e^{j\omega (t-\tau _{2})}}
τ
1
=
(
S
M
)
1
c
{\displaystyle \tau _{1}={\frac {(SM)_{1}}{c}}}
τ
2
=
(
S
M
)
2
c
{\displaystyle \tau _{2}={\frac {(SM)_{2}}{c}}}
A
(
M
,
t
)
=
A
0
e
j
ω
t
(
e
−
j
ω
(
S
M
)
1
c
+
e
−
j
ω
(
S
M
)
2
c
)
{\displaystyle {\mathcal {A}}(M,t)={\mathcal {A}}_{0}e^{j\omega t}\left(e^{-j\omega {\frac {(SM)_{1}}{c}}}+e^{-j\omega {\frac {(SM)_{2}}{c}}}\right)}
δ
=
(
S
M
)
2
−
(
S
M
)
1
{\displaystyle \delta =(SM)_{2}-(SM)_{1}}
est la différence de chemin optique, ou différence de marche
I
(
M
)
=
⟨
A
(
M
,
t
)
⋅
A
(
M
,
t
)
∗
⟩
{\displaystyle I(M)=\langle {\mathcal {A}}(M,t)\cdot {\mathcal {A}}(M,t)^{*}\rangle }
I
(
M
)
=
⟨
A
(
M
,
t
)
⋅
A
(
M
,
t
)
∗
⟩
=
A
0
2
⟨
(
e
−
j
ω
(
S
M
)
1
c
+
e
−
j
ω
(
S
M
)
2
c
)
(
e
−
j
ω
(
S
M
)
1
c
+
e
−
j
ω
(
S
M
)
2
c
)
∗
⟩
=
A
0
2
⟨
(
e
−
j
ω
(
S
M
)
1
c
+
e
−
j
ω
(
S
M
)
2
c
)
(
e
j
ω
(
S
M
)
1
c
+
e
j
ω
(
S
M
)
2
c
)
⟩
=
A
0
2
⟨
2
+
2
cos
(
ω
c
(
S
M
)
2
−
(
S
M
)
1
)
⟩
=
2
A
0
2
⟨
1
+
cos
(
ω
δ
c
)
⟩
=
2
A
0
2
⟨
1
+
cos
(
2
π
δ
n
u
c
)
⟩
=
2
A
0
2
⟨
1
+
cos
(
2
π
δ
1
λ
0
)
⟩
=
4
A
0
2
cos
(
π
δ
λ
0
)
2
{\displaystyle {\begin{aligned}I(M)&=\langle {\mathcal {A}}(M,t)\cdot {\mathcal {A}}(M,t)^{*}\rangle \\&={\mathcal {A}}_{0}^{2}\langle \left(e^{-j\omega {\frac {(SM)_{1}}{c}}}+e^{-j\omega {\frac {(SM)_{2}}{c}}}\right)\left(e^{-j\omega {\frac {(SM)_{1}}{c}}}+e^{-j\omega {\frac {(SM)_{2}}{c}}}\right)^{*}\rangle \\&={\mathcal {A}}_{0}^{2}\langle \left(e^{-j\omega {\frac {(SM)_{1}}{c}}}+e^{-j\omega {\frac {(SM)_{2}}{c}}}\right)\left(e^{j\omega {\frac {(SM)_{1}}{c}}}+e^{j\omega {\frac {(SM)_{2}}{c}}}\right)\rangle \\&={\mathcal {A}}_{0}^{2}\langle 2+2\cos \left({\frac {\omega }{c}}(SM)_{2}-(SM)_{1}\right)\rangle \\&=2{\mathcal {A}}_{0}^{2}\langle 1+\cos \left({\frac {\omega \delta }{c}}\right)\rangle \\&=2{\mathcal {A}}_{0}^{2}\langle 1+\cos \left(2\pi \delta {\frac {nu}{c}}\right)\rangle \\&=2{\mathcal {A}}_{0}^{2}\langle 1+\cos \left(2\pi \delta {\frac {1}{\lambda _{0}}}\right)\rangle \\&=4{\mathcal {A}}_{0}^{2}\cos \left({\frac {\pi \delta }{\lambda _{0}}}\right)^{2}\\\end{aligned}}}
I
0
=
A
0
2
{\displaystyle I_{0}={\mathcal {A}}_{0}^{2}}
σ
0
=
1
λ
0
{\displaystyle \sigma _{0}={\frac {1}{\lambda _{0}}}}
nombre d'onde
I
(
M
)
=
4
I
0
cos
(
π
σ
0
δ
)
2
{\displaystyle I(M)=4I_{0}\cos(\pi \sigma _{0}\delta )^{2}}
Sans interférences, on aurait
I
(
M
)
=
2
I
0
{\displaystyle I(M)=2I_{0}}
. Avec interférences, on obtient un terme modulant.
On appelle frange d'interférence l’ensemble des points M de l'écran tels que
δ
(
M
)
{\displaystyle \delta (M)}
est constant.
S
2
M
−
S
1
M
=
c
s
t
e
{\displaystyle S_{2}M-S_{1}M={\rm {cste}}}
Les lignes de niveau de δ sont des hyperboloïdes de révolution autour de
(
S
1
S
2
)
{\displaystyle (S_{1}S_{2})}
Franges brillantes
ρ
B
=
R
λ
0
(
l
−
1
2
)
{\displaystyle \rho _{B}={\sqrt {R\lambda _{0}\left(l-{\frac {1}{2}}\right)}}}
Franges sombres
ρ
S
=
R
λ
0
l
{\displaystyle \rho _{S}={\sqrt {R\lambda _{0}l}}}
I
=
4
I
0
(
1
+
cos
(
π
δ
(
1
λ
1
+
1
λ
2
)
)
cos
(
π
δ
(
1
λ
1
−
1
λ
2
)
)
)
≈
4
I
0
(
1
+
cos
(
2
π
δ
λ
)
cos
(
π
δ
Δ
λ
λ
2
)
)
{\displaystyle I=4I_{0}\left(1+\cos \left(\pi \delta \left({\frac {1}{\lambda _{1}}}+{\frac {1}{\lambda _{2}}}\right)\right)\cos \left(\pi \delta \left({\frac {1}{\lambda _{1}}}-{\frac {1}{\lambda _{2}}}\right)\right)\right)\approx 4I_{0}\left(1+\cos \left({\frac {2\pi \delta }{\lambda }}\right)\cos \left(\pi \delta {\frac {\Delta \lambda }{\lambda ^{2}}}\right)\right)}
A
(
M
)
=
∬
S
k
A
0
e
j
2
π
n
σ
0
x
X
+
y
Y
f
′
d
2
S
=
∫
x
=
−
a
x
=
a
∫
y
=
−
b
y
=
b
k
A
0
e
j
2
π
n
σ
0
x
X
f
′
e
j
2
π
n
σ
0
y
Y
f
′
d
x
d
y
=
k
A
0
(
∫
x
=
−
a
x
=
a
e
j
2
π
n
σ
0
x
X
f
′
d
x
)
(
∫
y
=
−
b
y
=
b
e
j
2
π
n
σ
0
y
Y
f
′
d
y
)
=
k
A
0
(
e
j
2
π
n
σ
0
a
X
f
′
−
e
−
j
2
π
n
σ
0
a
X
f
′
2
j
π
n
σ
0
X
f
′
)
(
e
j
2
π
n
σ
0
b
Y
f
′
−
e
−
j
2
π
n
σ
0
b
Y
f
′
2
j
π
n
σ
0
Y
f
′
)
=
k
A
0
sin
(
2
π
n
σ
0
a
X
f
′
)
π
n
σ
0
X
f
′
sin
(
2
π
n
σ
0
b
Y
f
′
)
π
n
σ
0
X
f
′
=
4
a
b
k
A
0
sin
(
2
π
n
σ
0
a
X
f
′
)
2
a
π
n
σ
0
X
f
′
sin
(
2
π
n
σ
0
b
Y
f
′
)
2
b
π
n
σ
0
X
f
′
=
4
a
b
k
A
0
s
i
n
c
(
2
π
n
σ
0
a
X
f
′
)
s
i
n
c
(
2
π
n
σ
0
b
Y
f
′
)
{\displaystyle {\begin{aligned}{\mathcal {A}}(M)&=\iint _{S}k{\mathcal {A}}_{0}e^{j2\pi n\sigma _{0}{\frac {xX+yY}{f'}}}{\rm {d}}^{2}S\\&=\int _{x=-a}^{x=a}\int _{y=-b}^{y=b}k{\mathcal {A}}_{0}e^{j2\pi n\sigma _{0}{\frac {xX}{f'}}}e^{j2\pi n\sigma _{0}{\frac {yY}{f'}}}{\rm {d}}x{\rm {d}}y\\&=k{\mathcal {A}}_{0}\left(\int _{x=-a}^{x=a}e^{j2\pi n\sigma _{0}{\frac {xX}{f'}}}{\rm {d}}x\right)\left(\int _{y=-b}^{y=b}e^{j2\pi n\sigma _{0}{\frac {yY}{f'}}}{\rm {d}}y\right)\\&=k{\mathcal {A}}_{0}\left({\frac {e^{j2\pi n\sigma _{0}{\frac {aX}{f'}}}-e^{-j2\pi n\sigma _{0}{\frac {aX}{f'}}}}{2j\pi n\sigma _{0}{\frac {X}{f'}}}}\right)\left({\frac {e^{j2\pi n\sigma _{0}{\frac {bY}{f'}}}-e^{-j2\pi n\sigma _{0}{\frac {bY}{f'}}}}{2j\pi n\sigma _{0}{\frac {Y}{f'}}}}\right)\\&=k{\mathcal {A}}_{0}{\frac {\sin \left(2\pi n\sigma _{0}{\frac {aX}{f'}}\right)}{\pi n\sigma _{0}{\frac {X}{f'}}}}{\frac {\sin \left(2\pi n\sigma _{0}{\frac {bY}{f'}}\right)}{\pi n\sigma _{0}{\frac {X}{f'}}}}\\&=4abk{\mathcal {A}}_{0}{\frac {\sin \left(2\pi n\sigma _{0}{\frac {aX}{f'}}\right)}{2a\pi n\sigma _{0}{\frac {X}{f'}}}}{\frac {\sin \left(2\pi n\sigma _{0}{\frac {bY}{f'}}\right)}{2b\pi n\sigma _{0}{\frac {X}{f'}}}}\\&=4abk{\mathcal {A}}_{0}\,{\rm {sinc}}\left(2\pi n\sigma _{0}{\frac {aX}{f'}}\right){\rm {sinc}}\left(2\pi n\sigma _{0}{\frac {bY}{f'}}\right)\\\end{aligned}}}
I
(
M
)
=
(
4
a
b
k
A
0
)
2
s
i
n
c
(
2
π
n
σ
0
a
X
f
′
)
2
s
i
n
c
(
2
π
n
σ
0
b
Y
f
′
)
2
{\displaystyle I(M)=(4abk{\mathcal {A}}_{0})^{2}{\rm {sinc}}\left(2\pi n\sigma _{0}{\frac {aX}{f'}}\right)^{2}{\rm {sinc}}\left(2\pi n\sigma _{0}{\frac {bY}{f'}}\right)^{2}}
I
0
=
(
4
a
b
k
A
0
)
2
{\displaystyle I_{0}=(4abk{\mathcal {A}}_{0})^{2}}
Maximum absolu en (X,Y)=(0,0)
Minimums nuls :
X
=
k
f
′
2
n
a
σ
0
{\displaystyle X={\frac {kf'}{2na\sigma _{0}}}}
et
Y
=
l
f
′
2
n
a
σ
0
{\displaystyle Y={\frac {lf'}{2na\sigma _{0}}}}
,
(
k
,
l
)
∈
(
Z
∗
)
2
{\displaystyle (k,l)\in (\mathbb {Z} ^{*})^{2}}
Tache d'airy :
ρ
=
0
,
61
λ
0
f
′
a
{\displaystyle \rho =0,61{\frac {\lambda _{0}f'}{a}}}
A
(
M
)
=
k
A
0
2
b
2
a
s
i
n
c
(
2
π
a
σ
0
sin
(
θ
)
)
{\displaystyle {\mathcal {A}}(M)=k{\mathcal {A}}_{0}2b2a{\rm {sinc}}(2\pi a\sigma _{0}\sin(\theta ))}
u
=
2
π
a
σ
0
sin
(
θ
)
{\displaystyle u=2\pi a\sigma _{0}\sin(\theta )}
,
I
0
=
4
a
b
k
A
0
{\displaystyle I_{0}=4abk{\mathcal {A}}_{0}}
I
(
M
)
=
I
0
s
i
n
c
(
u
)
2
{\displaystyle I(M)=I_{0}{\rm {sinc}}(u)^{2}}
I
(
M
)
=
N
2
I
0
s
i
n
c
(
π
σ
0
a
u
)
2
sin
(
π
σ
0
N
h
u
)
2
N
2
sin
(
π
σ
0
h
u
)
2
{\displaystyle I(M)=N^{2}I_{0}{\rm {sinc}}(\pi \sigma _{0}au)^{2}{\frac {\sin(\pi \sigma _{0}Nhu)^{2}}{N^{2}\sin(\pi \sigma _{0}hu)^{2}}}}
Pouvoir de résolution
R
=
λ
Δ
λ
{\displaystyle {\mathcal {R}}={\frac {\lambda }{\Delta \lambda }}}
Finesse
F
=
1
2
l
{\displaystyle F={\frac {1}{2l}}}
La source située en PS génère l'onde
ψ
=
A
r
s
e
j
(
ω
t
−
k
r
s
)
{\displaystyle \psi ={\frac {A}{r_{s}}}e^{j(\omega t-kr_{s})}}
La surface S entoure PS (peuplée de monopôles)
Le champ en P0 est la somme des contributions des monopôles
Hypothèses
Le champ en P0 est proportionnel à
la valeur du champ incident reçu en dS à t'
A
r
s
e
j
(
ω
t
′
−
k
r
s
)
{\displaystyle {\frac {A}{r_{s}}}e^{j(\omega t'-kr_{s})}}
la surface dS
facteur de propagation sphérique
1
r
0
e
j
(
ω
(
t
−
t
′
)
−
k
r
0
)
{\displaystyle {\frac {1}{r_{0}}}e^{j(\omega (t-t')-kr_{0})}}
fonction d'obliquité
f
(
θ
0
,
θ
s
)
{\displaystyle f(\theta _{0},\theta _{s})}
dS va créer une contribution dψ au point P0
d
ψ
=
k
a
r
s
e
j
(
ω
t
′
−
k
r
s
)
1
r
0
e
j
(
ω
(
t
−
t
′
)
−
k
r
0
)
d
S
f
(
θ
0
,
θ
s
)
{\displaystyle d\psi =k{\frac {a}{r_{s}}}e^{j(\omega t'-kr_{s})}{\frac {1}{r_{0}}}e^{j(\omega (t-t')-kr_{0})}dSf(\theta _{0},\theta _{s})}
Différents problèmes :
k
∈
R
{\displaystyle k\in \mathbb {R} }
: faux
f
(
θ
0
,
θ
s
)
=
?
{\displaystyle f(\theta _{0},\theta _{s})=?}
Théorème de Green
∮
S
(
ψ
1
∇
→
ψ
2
−
ψ
2
∇
→
ψ
1
)
n
→
d
S
=
∫
V
(
ψ
1
Δ
ψ
2
−
ψ
2
δ
ψ
1
)
d
V
{\displaystyle \oint _{S}\left(\psi _{1}{\vec {\nabla }}\psi _{2}-\psi _{2}{\vec {\nabla }}\psi _{1}\right){\vec {n}}dS=\int _{V}\left(\psi _{1}\Delta \psi _{2}-\psi _{2}\delta \psi _{1}\right)dV}
On essaie de réduire l'intégrale de volume à la contribution d'un point P0
Calcul du champ en P0 connaissant ψ et
∂
ψ
∂
n
{\displaystyle {\frac {\partial \psi }{\partial n}}}
sur S
On choisit
ψ
1
=
ψ
(
x
,
y
,
z
,
t
)
{\displaystyle \psi _{1}=\psi (x,y,z,t)}
l'onde recherchée et
ψ
2
=
1
r
0
e
j
(
ω
t
−
k
r
0
)
{\displaystyle \psi _{2}={\frac {1}{r_{0}}}e^{j(\omega t-kr_{0})}}
onde sphérique qui aurait P0 comme source
Pas le droit aux discontinuités : on introduit une sphère de rayon ε autour de P0 de surface S'
Green sur SUS'
∫
V
ψ
(
−
k
2
ψ
2
)
ψ
2
(
−
k
2
ψ
)
d
V
=
0
{\displaystyle \int _{V}\psi (-k^{2}\psi _{2})\psi _{2}(-k^{2}\psi )dV=0}
∮
s
∪
S
′
=
0
{\displaystyle \oint _{s\cup S'}=0}
d
S
=
ϵ
2
d
Ω
{\displaystyle dS=\epsilon ^{2}d\Omega }
∮
S
′
[
ψ
∇
→
(
1
r
0
e
j
(
ω
t
−
k
r
0
)
)
−
1
r
0
e
j
(
ω
t
−
k
r
0
)
∇
→
ψ
]
n
→
d
S
=
∫
Ω
[
ψ
(
−
1
ϵ
2
−
j
k
ϵ
)
e
j
(
ω
t
−
k
ϵ
)
u
→
r
−
1
ϵ
e
j
(
ω
t
−
k
ϵ
)
∇
→
ψ
]
n
→
ϵ
2
d
Ω
{\displaystyle \oint _{S'}\left[\psi {\vec {\nabla }}\left({\frac {1}{r_{0}}}e^{j(\omega t-kr_{0})}\right)-{\frac {1}{r_{0}}}e^{j(\omega t-kr_{0})}{\vec {\nabla }}\psi \right]{\vec {n}}dS=\int _{\Omega }\left[\psi \left(-{\frac {1}{\epsilon ^{2}}}-{\frac {jk}{\epsilon }}\right)e^{j(\omega t-k\epsilon )}{\vec {u}}_{r}-{\frac {1}{\epsilon }}e^{j(\omega t-k\epsilon )}{\vec {\nabla }}\psi \right]{\vec {n}}\epsilon ^{2}d\Omega }
n
→
=
−
u
→
r
{\displaystyle {\vec {n}}=-{\vec {u}}_{r}}
∇
→
ψ
=
∂
ψ
∂
r
u
→
r
+
1
r
∂
ψ
∂
θ
u
→
θ
+
1
r
sin
θ
∂
ψ
∂
ϕ
u
→
ϕ
{\displaystyle {\vec {\nabla }}\psi ={\frac {\partial \psi }{\partial r}}{\vec {u}}_{r}+{\frac {1}{r}}{\frac {\partial \psi }{\partial \theta }}{\vec {u}}_{\theta }+{\frac {1}{r\sin \theta }}{\frac {\partial \psi }{\partial \phi }}{\vec {u}}_{\phi }}
=
∫
Ω
[
ψ
(
1
ϵ
2
j
k
ϵ
)
e
j
(
ω
t
−
k
ϵ
)
+
1
ϵ
e
j
(
ω
t
−
k
ϵ
)
∇
→
ψ
]
ϵ
2
d
Ω
{\displaystyle =\int _{\Omega }\left[\psi \left({\frac {1}{\epsilon ^{2}}}{\frac {jk}{\epsilon }}\right)e^{j(\omega t-k\epsilon )}+{\frac {1}{\epsilon }}e^{j(\omega t-k\epsilon )}{\vec {\nabla }}\psi \right]\epsilon ^{2}d\Omega }
ϵ
→
0
{\displaystyle \epsilon \to 0}
=
∫
V
ψ
e
j
ω
t
d
Ω
=
ψ
(
P
0
)
e
j
ω
t
4
π
{\displaystyle =\int _{V}\psi e^{j\omega t}d\Omega =\psi (P_{0})e^{j\omega t}4\pi }
Intégrale d'Helmoltz Kirchhoff
ψ
(
P
0
)
=
−
1
4
π
∮
S
[
ψ
∇
→
(
1
r
0
e
j
(
ω
t
−
k
r
0
)
)
−
1
r
0
e
j
(
ω
t
−
k
r
0
)
∇
→
ψ
]
n
→
d
S
{\displaystyle \psi (P_{0})=-{\frac {1}{4\pi }}\oint _{S}\left[\psi {\vec {\nabla }}\left({\frac {1}{r_{0}}}e^{j(\omega t-kr_{0})}\right)-{\frac {1}{r_{0}}}e^{j(\omega t-kr_{0})}{\vec {\nabla }}\psi \right]{\vec {n}}dS}