D'après la relation
p
(
t
)
=
u
(
t
)
⋅
i
(
t
)
{\displaystyle p(t)=u(t)\cdot i(t)}
On développe
u
(
t
)
{\displaystyle u(t)}
et
i
(
t
)
{\displaystyle i(t)}
.
p
(
t
)
=
U
⋅
2
⋅
sin
(
ω
t
)
⋅
I
⋅
2
⋅
sin
(
ω
t
+
ϕ
)
=
2
⋅
U
⋅
I
⋅
sin
(
ω
t
)
⋅
sin
(
ω
t
+
ϕ
)
{\displaystyle p(t)=U\cdot {\sqrt {2}}\cdot \sin(\omega t)\cdot I\cdot {\sqrt {2}}\cdot \sin(\omega t+\phi )=2\cdot U\cdot I\cdot \sin(\omega t)\cdot \sin(\omega t+\phi )}
Or
sin
(
α
)
⋅
sin
(
β
)
=
1
2
(
cos
(
α
−
β
)
−
cos
(
α
+
β
)
)
{\displaystyle \sin(\alpha )\cdot \sin(\beta )={\frac {1}{2}}(\cos(\alpha -\beta )-\cos(\alpha +\beta ))}
donc
p
(
t
)
=
2
⋅
U
⋅
I
⋅
1
2
(
cos
(
ω
t
−
(
ω
t
+
ϕ
)
)
⋅
cos
(
ω
t
+
ω
t
+
ϕ
)
)
=
U
⋅
I
⋅
(
cos
(
−
ϕ
)
−
cos
(
2
ω
t
+
ϕ
)
)
=
U
⋅
I
⋅
cos
(
ϕ
)
⏟
constant
−
U
⋅
I
⋅
cos
(
2
ω
t
+
ϕ
)
⏟
fluctuant
{\displaystyle {\begin{aligned}p(t)&=2\cdot U\cdot I\cdot {\frac {1}{2}}(\cos(\omega t-(\omega t+\phi ))\cdot \cos(\omega t+\omega t+\phi ))\\&=U\cdot I\cdot (\cos(-\phi )-\cos(2\omega t+\phi ))\\&=\underbrace {U\cdot I\cdot \cos(\phi )} _{\text{constant}}-\underbrace {U\cdot I\cdot \cos(2\omega t+\phi )} _{\text{fluctuant}}\end{aligned}}}