Lois de probabilité continues/Loi normale

Début de la boite de navigation du chapitre

Soit un nombre réel strictement positif et un nombre réel quelconque. On appelle loi normale ou loi de Gauss ou loi de Laplace-Gauss de paramètres et , la loi de probabilité dont la densité est définie par :

Loi normale
Icône de la faculté
Chapitre no 4
Leçon : Lois de probabilité continues
Chap. préc. :Loi exponentielle
Chap. suiv. :Sommaire
fin de la boite de navigation du chapitre
En raison de limitations techniques, la typographie souhaitable du titre, « Lois de probabilité continues : Loi normale
Lois de probabilité continues/Loi normale
 », n'a pu être restituée correctement ci-dessus.
.

Nous l'étudierons plus en détail au niveau 14, au chapitre 3 de la leçon sur les variables aléatoires continues.

Nous admettons ici que cette fonction (continue, positive) est bien une densité de probabilité, c'est-à-dire que .

Cette loi est utilisée pour les variables aléatoires dont la valeur dépend d'un grand nombre de causes indépendantes dont les effets s'additionnent et dont aucune n'est prépondérante.

Espérance mathématique et écart-type

modifier


On montre aussi (admis) que l'écart-type est égal à  .

Loi normale centrée réduite

modifier

La loi normale d'espérance   et d'écart-type   est appelée la loi normale centrée réduite.



 
Graphe de  .

Relation entre loi normale et loi normale centrée réduite

modifier

La loi normale dans le cas le plus général, c'est-à-dire dont la fonction densité de probabilité est :

 ,

n'est pas facile à étudier du fait que l'on ne connait pas la primitive de la fonction  . Heureusement, on se ramène très facilement à une loi normale centrée réduite en faisant le changement de variable :

 .

On a, en effet, la propriété suivante :

Cette propriété permet de simplifier l'étude d'une loi normale quelconque en la ramenant à une loi normale centrée réduite. Par exemple, à l'époque où les calculatrices n'existaient pas, on pouvait se contenter de tables sur la loi normale centrée réduite pour pouvoir étudier des phénomènes suivant une loi normale quelconque.

Théorème de Moivre-Laplace

modifier

Nous avons le théorème suivant :

Début d’un théorème
Fin du théorème

Le changement de variable aléatoire :

 

est à rapprocher du changement de variable aléatoire :

 

vu au paragraphe précédent puisque pour une loi binomiale  , l'espérance   et l'écart-type   sont donnés par :


 

 


Le théorème précédent nous montre donc que la loi normale peut être vue comme la limite d'une loi binomiale lorsque n tend vers  . Ceci est une propriété appréciable dans la mesure où la loi binomiale est d'autant plus difficile à calculer que la valeur de n est élevée.

Intervalles symétriques

modifier

La loi normale exprime comment fluctue une variable aléatoire autour d'une valeur moyenne  . Nous sommes alors intéressés par la probabilité qu'a la variable aléatoire de sortir d'un intervalle symétrique par rapport à cette valeur  .

Soit   une variable aléatoire suivant une loi normale centrée réduite. Soit   un réel compris entre   et   (exprimant une probabilité). Il existe un unique réel positif   tel que :

 .

Autrement dit   exprime la probabilité de sortir d'un intervalle  , symétrique par rapport à l'origine.

Nous connaissons en général par cœur les deux valeurs suivantes :

  •   ;
  •  .

Nous retrouverons cette notion d'intervalle symétrique par rapport à une valeur donnée dans l'étude sur l'échantillonnage et l'estimation.