Type
MonômeAVEC Sin Cos Sinh Cosh Tan Tanh Exp
x
2
l
/
2
l
+
1
×
sin
2
m
/
2
m
+
1
(
ω
x
)
{\displaystyle x^{2l/2l+1}\times \sin ^{2m/2m+1}(\omega x)}
XXXXXXXXXXXXXXXXXXXXXXXX
x
2
l
/
2
l
+
1
×
sinh
2
m
/
2
m
+
1
(
ω
x
)
{\displaystyle x^{2l/2l+1}\times \sinh ^{2m/2m+1}(\omega x)}
XXXXXXXXXXXXXXXXXXXXXXXX
x
2
l
/
2
l
+
1
×
tan
2
m
/
2
m
+
1
(
ω
x
)
{\displaystyle x^{2l/2l+1}\times \tan ^{2m/2m+1}(\omega x)}
x
2
l
/
2
l
+
1
×
tanh
2
m
/
2
m
+
1
(
ω
x
)
{\displaystyle x^{2l/2l+1}\times \tanh ^{2m/2m+1}(\omega x)}
XXXXXXXXXXXXXXXXXXXXXXXX
x
2
l
×
sin
m
(
ω
x
2
)
{\displaystyle x^{2l}\times \sin ^{m}(\omega x^{2})}
x
2
l
×
cos
m
(
ω
x
2
)
{\displaystyle x^{2l}\times \cos ^{m}(\omega x^{2})}
x
2
l
×
sinh
m
(
ω
x
2
)
{\displaystyle x^{2l}\times \sinh ^{m}(\omega x^{2})}
x
2
l
×
cosh
m
(
ω
x
2
)
{\displaystyle x^{2l}\times \cosh ^{m}(\omega x^{2})}
x
2
l
×
tan
m
(
ω
x
2
)
{\displaystyle x^{2l}\times \tan ^{m}(\omega x^{2})}
x
2
l
×
tanh
m
(
ω
x
2
)
{\displaystyle x^{2l}\times \tanh ^{m}(\omega x^{2})}
x
2
l
×
exp
m
(
ω
x
2
)
{\displaystyle x^{2l}\times \exp ^{m}(\omega x^{2})}
x
2
l
×
sin
2
m
(
ω
x
)
{\displaystyle x^{2l}\times \sin ^{2m}(\omega x)}
x
2
l
×
cos
m
(
ω
x
)
{\displaystyle x^{2l}\times \cos ^{m}(\omega x)}
x
2
l
×
sinh
2
m
(
ω
x
)
{\displaystyle x^{2l}\times \sinh ^{2m}(\omega x)}
x
2
l
×
cos
m
(
ω
x
)
{\displaystyle x^{2l}\times \cos ^{m}(\omega x)}
x
2
l
×
tan
2
m
(
ω
x
)
{\displaystyle x^{2l}\times \tan ^{2m}(\omega x)}
x
2
l
×
tanh
2
m
(
ω
x
)
{\displaystyle x^{2l}\times \tanh ^{2m}(\omega x)}
XXXXXXXXXXXXXXXXXXXXXXXXXXX
x
2
l
+
1
×
sin
2
m
(
ω
x
2
n
+
1
)
{\displaystyle x^{2l+1}\times \sin ^{2m}(\omega x^{2n+1})}
/
x
2
l
+
1
×
sin
m
(
ω
x
2
n
)
{\displaystyle x^{2l+1}\times \sin ^{m}(\omega x^{2n})}
/
x
2
l
×
sin
2
m
+
1
(
ω
x
2
n
+
1
)
{\displaystyle x^{2l}\times \sin ^{2m+1}(\omega x^{2n+1})}
x
2
l
+
1
×
cos
2
m
(
ω
x
2
n
+
1
)
{\displaystyle x^{2l+1}\times \cos ^{2m}(\omega x^{2n+1})}
/
x
2
l
+
1
×
cos
m
(
ω
x
2
n
)
{\displaystyle x^{2l+1}\times \cos ^{m}(\omega x^{2n})}
/XXXXXXXXXXXXXXXXXXXXXXXXXXXX
x
2
l
+
1
×
sinh
2
m
(
ω
x
2
n
+
1
)
{\displaystyle x^{2l+1}\times \sinh ^{2m}(\omega x^{2n+1})}
/
x
2
l
+
1
×
sinh
m
(
ω
x
2
n
)
{\displaystyle x^{2l+1}\times \sinh ^{m}(\omega x^{2n})}
/
x
2
l
×
sinh
2
m
+
1
(
ω
x
2
n
+
1
)
{\displaystyle x^{2l}\times \sinh ^{2m+1}(\omega x^{2n+1})}
x
2
l
+
1
×
cosh
2
m
(
ω
x
2
n
+
1
)
{\displaystyle x^{2l+1}\times \cosh ^{2m}(\omega x^{2n+1})}
/
x
2
l
+
1
×
cosh
m
(
ω
x
2
n
)
{\displaystyle x^{2l+1}\times \cosh ^{m}(\omega x^{2n})}
/XXXXXXXXXXXXXXXXXXXXXXXXXXXX
x
2
l
+
1
×
tan
2
m
+
1
(
ω
x
2
n
+
1
)
{\displaystyle x^{2l+1}\times \tan ^{2m+1}(\omega x^{2n+1})}
/
x
2
l
+
1
×
tan
m
(
ω
x
2
n
)
{\displaystyle x^{2l+1}\times \tan ^{m}(\omega x^{2n})}
/
x
2
l
×
tan
2
m
+
1
(
ω
x
2
n
+
1
)
{\displaystyle x^{2l}\times \tan ^{2m+1}(\omega x^{2n+1})}
x
2
l
+
1
×
tanh
2
m
(
ω
x
2
n
+
1
)
{\displaystyle x^{2l+1}\times \tanh ^{2m}(\omega x^{2n+1})}
/
x
2
l
+
1
×
tanh
m
(
ω
x
2
n
)
/
x
2
l
×
tanh
2
m
+
1
(
ω
x
2
n
+
1
)
{\displaystyle x^{2l+1}\times \tanh ^{m}(\omega x^{2n})/x^{2l}\times \tanh ^{2m+1}(\omega x^{2n+1})}
XXXXXXXXXXXXXXXXXXXXXXXXXXXX /
x
2
l
+
1
×
exp
m
(
ω
x
2
n
)
{\displaystyle x^{2l+1}\times \exp ^{m}(\omega x^{2n})}
/ XXXXXXXXXXXXXXXXXXXXXXXXXXXX
SinusAVEC Sin Cos Sinh Cosh Tan Tanh Exp
sin
(
ω
1
x
)
×
sin
2
m
(
ω
2
x
)
{\displaystyle \sin(\omega _{1}x)\times \sin ^{2m}(\omega _{2}x)}
sin
(
ω
1
x
)
×
cos
m
(
ω
2
x
)
{\displaystyle \sin(\omega _{1}x)\times \cos ^{m}(\omega _{2}x)}
sin
(
ω
1
x
)
×
sinh
2
m
(
ω
2
x
)
{\displaystyle \sin(\omega _{1}x)\times \sinh ^{2m}(\omega _{2}x)}
sin
(
ω
1
x
)
×
cosh
m
(
ω
2
x
)
{\displaystyle \sin(\omega _{1}x)\times \cosh ^{m}(\omega _{2}x)}
sin
(
ω
1
x
)
×
tan
2
m
(
ω
2
x
)
{\displaystyle \sin(\omega _{1}x)\times \tan ^{2m}(\omega _{2}x)}
sin
(
ω
1
x
)
×
tanh
2
m
(
ω
2
x
)
{\displaystyle \sin(\omega _{1}x)\times \tanh ^{2m}(\omega _{2}x)}
XXXXXXXXXXXXXXXXXXXXXXXX
sin
(
ω
1
x
2
l
+
1
)
×
sin
m
(
ω
x
2
)
{\displaystyle \sin(\omega _{1}x^{2l+1})\times \sin ^{m}(\omega x^{2})}
sin
(
ω
1
x
2
l
+
1
)
×
cos
m
(
ω
x
2
)
{\displaystyle \sin(\omega _{1}x^{2l+1})\times \cos ^{m}(\omega x^{2})}
sin
(
ω
1
x
2
l
+
1
)
×
sinh
m
(
ω
x
2
)
{\displaystyle \sin(\omega _{1}x^{2l+1})\times \sinh ^{m}(\omega x^{2})}
sin
(
ω
1
x
2
l
+
1
)
×
cosh
m
(
ω
x
2
)
{\displaystyle \sin(\omega _{1}x^{2l+1})\times \cosh ^{m}(\omega x^{2})}
sin
(
ω
1
x
2
l
+
1
)
×
tan
m
(
ω
x
2
)
{\displaystyle \sin(\omega _{1}x^{2l+1})\times \tan ^{m}(\omega x^{2})}
sin
(
ω
1
x
2
l
+
1
)
×
tanh
m
(
ω
x
2
)
{\displaystyle \sin(\omega _{1}x^{2l+1})\times \tanh ^{m}(\omega x^{2})}
sin
(
ω
1
x
2
l
+
1
)
×
exp
m
(
ω
x
2
)
{\displaystyle \sin(\omega _{1}x^{2l+1})\times \exp ^{m}(\omega x^{2})}
sin
(
ω
1
x
2
l
)
×
sin
2
m
+
1
(
ω
2
x
)
{\displaystyle \sin(\omega _{1}x^{2l})\times \sin ^{2m+1}(\omega _{2}x)}
XXXXXXXXXXXXXXXXXXXXXXXXXXX
sin
(
ω
1
x
2
l
)
×
sinh
2
m
+
1
(
ω
2
x
)
{\displaystyle \sin(\omega _{1}x^{2l})\times \sinh ^{2m+1}(\omega _{2}x)}
XXXXXXXXXXXXXXXXXXXXXXXXXXX
sin
(
ω
1
x
2
l
)
×
tan
2
m
+
1
(
ω
2
x
)
{\displaystyle \sin(\omega _{1}x^{2l})\times \tan ^{2m+1}(\omega _{2}x)}
sin
(
ω
1
x
2
l
)
×
tanh
2
m
+
1
(
ω
2
x
)
{\displaystyle \sin(\omega _{1}x^{2l})\times \tanh ^{2m+1}(\omega _{2}x)}
XXXXXXXXXXXXXXXXXXXXXXXXXXX
sin
(
ω
1
x
2
l
+
1
)
×
sin
2
m
(
ω
2
x
2
n
+
1
)
{\displaystyle \sin(\omega _{1}x^{2l+1})\times \sin ^{2m}(\omega _{2}x^{2n+1})}
/
sin
(
ω
1
x
2
l
+
1
)
×
sin
m
(
ω
2
x
2
n
)
{\displaystyle \sin(\omega _{1}x^{2l+1})\times \sin ^{m}(\omega _{2}x^{2n})}
/
sin
(
ω
1
x
2
l
)
×
sin
2
m
+
1
(
ω
2
x
2
n
+
1
)
{\displaystyle \sin(\omega _{1}x^{2l})\times \sin ^{2m+1}(\omega _{2}x^{2n+1})}
sin
(
ω
1
x
2
l
+
1
)
×
cos
2
m
(
ω
2
x
2
n
+
1
)
{\displaystyle \sin(\omega _{1}x^{2l+1})\times \cos ^{2m}(\omega _{2}x^{2n+1})}
/
ω
1
s
i
n
(
x
2
l
+
1
)
×
cos
m
(
ω
2
x
2
n
)
{\displaystyle \omega _{1}sin(x^{2l+1})\times \cos ^{m}(\omega _{2}x^{2n})}
/XXXXXXXXXXXXXXXXXXXXXXXXXXXX
sin
(
ω
1
x
2
l
+
1
)
×
sinh
2
m
(
ω
2
x
2
n
+
1
)
{\displaystyle \sin(\omega _{1}x^{2l+1})\times \sinh ^{2m}(\omega _{2}x^{2n+1})}
/
sin
(
ω
1
x
2
l
+
1
)
×
sinh
m
(
ω
2
x
2
n
)
{\displaystyle \sin(\omega _{1}x^{2l+1})\times \sinh ^{m}(\omega _{2}x^{2n})}
/
sin
(
ω
1
x
2
l
)
×
sinh
2
m
+
1
(
ω
2
x
2
n
+
1
)
{\displaystyle \sin(\omega _{1}x^{2l})\times \sinh ^{2m+1}(\omega _{2}x^{2n+1})}
sin
(
ω
1
x
2
l
+
1
)
×
cosh
2
m
(
ω
2
x
2
n
+
1
)
{\displaystyle \sin(\omega _{1}x^{2l+1})\times \cosh ^{2m}(\omega _{2}x^{2n+1})}
/
sin
(
ω
1
x
2
l
+
1
)
×
cosh
m
(
ω
2
x
2
n
)
{\displaystyle \sin(\omega _{1}x^{2l+1})\times \cosh ^{m}(\omega _{2}x^{2n})}
/ XXXXXXXXXXXXXXXXXXX
sin
(
ω
1
x
2
l
+
1
)
×
tan
2
m
(
ω
2
x
2
n
+
1
)
{\displaystyle \sin(\omega _{1}x^{2l+1})\times \tan ^{2m}(\omega _{2}x^{2n+1})}
/
sin
(
ω
1
x
2
l
+
1
)
×
tan
m
(
ω
2
x
2
n
)
{\displaystyle \sin(\omega _{1}x^{2l+1})\times \tan ^{m}(\omega _{2}x^{2n})}
/
sin
(
ω
1
x
2
l
)
×
tan
2
m
+
1
(
ω
2
x
2
n
+
1
)
{\displaystyle \sin(\omega _{1}x^{2l})\times \tan ^{2m+1}(\omega _{2}x^{2n+1})}
sin
(
ω
1
x
2
l
+
1
)
×
tanh
2
m
(
ω
2
x
2
n
+
1
)
{\displaystyle \sin(\omega _{1}x^{2l+1})\times \tanh ^{2m}(\omega _{2}x^{2n+1})}
/
sin
(
ω
1
x
2
l
+
1
)
×
tanh
m
(
ω
2
x
2
n
)
/
sin
(
ω
1
x
2
l
)
×
tanh
2
m
+
1
(
ω
2
x
2
n
+
1
)
{\displaystyle \sin(\omega _{1}x^{2l+1})\times \tanh ^{m}(\omega _{2}x^{2n})/\sin(\omega _{1}x^{2l})\times \tanh ^{2m+1}(\omega _{2}x^{2n+1})}
XXXXXXXXXXXXXXXXXXXXXXXXXXXX/
sin
(
ω
1
x
2
l
+
1
)
×
exp
m
(
ω
2
x
2
n
)
{\displaystyle \sin(\omega _{1}x^{2l+1})\times \exp ^{m}(\omega _{2}x^{2n})}
/XXXXXXXXXXXXXXXXXXXXXXXXXXXX
Cos AVEC Cos Sinh Cosh Tan Tanh Exp
XXXXXXXXXXXXXXXXXXXXXXXX
cos
(
ω
1
x
)
×
sinh
2
m
+
1
(
ω
2
x
)
{\displaystyle \cos(\omega _{1}x)\times \sinh ^{2m+1}(\omega _{2}x)}
XXXXXXXXXXXXXXXXXXXXXXXX
cos
(
ω
1
x
)
×
tan
2
m
+
1
(
ω
2
x
)
{\displaystyle \cos(\omega _{1}x)\times \tan ^{2m+1}(\omega _{2}x)}
cos
(
ω
1
x
)
×
tanh
2
m
+
1
(
ω
2
x
)
{\displaystyle \cos(\omega _{1}x)\times \tanh ^{2m+1}(\omega _{2}x)}
XXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXX
cos
(
ω
1
x
l
)
×
sinh
2
m
+
1
(
ω
x
2
)
{\displaystyle \cos(\omega _{1}x^{l})\times \sinh ^{2m+1}(\omega x^{2})}
XXXXXXXXXXXXXXXXXXXXXXXXXXXX
cos
(
ω
1
x
l
)
×
tan
2
m
+
1
(
ω
x
2
)
{\displaystyle \cos(\omega _{1}x^{l})\times \tan ^{2m+1}(\omega x^{2})}
cos
(
ω
1
x
l
)
×
tanh
2
m
+
1
(
ω
x
2
)
{\displaystyle \cos(\omega _{1}x^{l})\times \tanh ^{2m+1}(\omega x^{2})}
XXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXX
cos
(
ω
1
x
l
)
×
sinh
2
m
+
1
(
ω
2
x
)
{\displaystyle \cos(\omega _{1}x^{l})\times \sinh ^{2m+1}(\omega _{2}x)}
XXXXXXXXXXXXXXXXXXXXXXXXXXX
cos
(
ω
1
x
l
)
×
tan
2
m
+
1
(
ω
2
x
)
{\displaystyle \cos(\omega _{1}x^{l})\times \tan ^{2m+1}(\omega _{2}x)}
cos
(
ω
1
x
l
)
×
tanh
2
m
+
1
(
ω
2
x
)
{\displaystyle \cos(\omega _{1}x^{l})\times \tanh ^{2m+1}(\omega _{2}x)}
XXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
cos
(
ω
1
x
2
l
+
1
)
×
sinh
2
m
+
1
(
ω
2
x
2
n
+
1
)
{\displaystyle \cos(\omega _{1}x^{2l+1})\times \sinh ^{2m+1}(\omega _{2}x^{2n+1})}
/
cos
(
ω
1
x
2
l
+
1
)
×
sinh
2
m
+
1
(
ω
2
x
2
n
)
{\displaystyle \cos(\omega _{1}x^{2l+1})\times \sinh ^{2m+1}(\omega _{2}x^{2n})}
/
cos
(
ω
1
x
2
l
)
×
sinh
2
m
+
1
(
ω
2
x
2
n
+
1
)
{\displaystyle \cos(\omega _{1}x^{2l})\times \sinh ^{2m+1}(\omega _{2}x^{2n+1})}
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
cos
(
ω
1
x
2
l
+
1
)
×
tan
2
m
+
1
(
ω
2
x
2
n
+
1
)
{\displaystyle \cos(\omega _{1}x^{2l+1})\times \tan ^{2m+1}(\omega _{2}x^{2n+1})}
/
cos
(
ω
1
x
2
l
+
1
)
×
tan
2
m
+
1
(
ω
2
x
2
n
)
{\displaystyle \cos(\omega _{1}x^{2l+1})\times \tan ^{2m+1}(\omega _{2}x^{2n})}
/
cos
(
ω
1
x
2
l
)
×
tan
2
m
+
1
(
ω
2
x
2
n
+
1
)
{\displaystyle \cos(\omega _{1}x^{2l})\times \tan ^{2m+1}(\omega _{2}x^{2n+1})}
cos
(
ω
1
x
2
l
+
1
)
×
tanh
2
m
+
1
(
ω
2
x
2
n
+
1
)
{\displaystyle \cos(\omega _{1}x^{2l+1})\times \tanh ^{2m+1}(\omega _{2}x^{2n+1})}
/
cos
(
ω
1
x
2
l
+
1
)
×
tanh
2
m
+
1
(
ω
2
x
2
n
)
/
cos
(
ω
1
x
2
l
)
×
tanh
2
m
+
1
(
ω
2
x
2
n
+
1
)
{\displaystyle \cos(\omega _{1}x^{2l+1})\times \tanh ^{2m+1}(\omega _{2}x^{2n})/\cos(\omega _{1}x^{2l})\times \tanh ^{2m+1}(\omega _{2}x^{2n+1})}
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
Cosh AVEC Sinh Cosh Tan Tanh Exp
cosh
(
ω
1
x
)
×
sinh
2
m
+
1
(
ω
2
x
)
{\displaystyle \cosh(\omega _{1}x)\times \sinh ^{2m+1}(\omega _{2}x)}
XXXXXXXXXXXXXXXXXXXXXXXX
cosh
(
ω
1
x
)
×
tan
2
m
+
1
(
ω
2
x
)
{\displaystyle \cosh(\omega _{1}x)\times \tan ^{2m+1}(\omega _{2}x)}
cosh
(
ω
1
x
)
×
tanh
2
m
+
1
(
ω
2
x
)
{\displaystyle \cosh(\omega _{1}x)\times \tanh ^{2m+1}(\omega _{2}x)}
XXXXXXXXXXXXXXXXXXXXXXXX
cosh
(
ω
1
x
l
)
×
sinh
2
m
+
1
(
ω
x
2
)
{\displaystyle \cosh(\omega _{1}x^{l})\times \sinh ^{2m+1}(\omega x^{2})}
XXXXXXXXXXXXXXXXXXXXXXXXXXXX
cosh
(
ω
1
x
l
)
×
tan
2
m
+
1
(
ω
x
2
)
{\displaystyle \cosh(\omega _{1}x^{l})\times \tan ^{2m+1}(\omega x^{2})}
cosh
(
ω
1
x
l
)
×
tanh
2
m
+
1
(
ω
x
2
)
{\displaystyle \cosh(\omega _{1}x^{l})\times \tanh ^{2m+1}(\omega x^{2})}
XXXXXXXXXXXXXXXXXXXXXXXXXXXX
cosh
(
ω
1
x
l
)
×
sinh
2
m
+
1
(
ω
2
x
)
{\displaystyle \cosh(\omega _{1}x^{l})\times \sinh ^{2m+1}(\omega _{2}x)}
XXXXXXXXXXXXXXXXXXXXXXXXXXX
cosh
(
ω
1
x
l
)
×
tan
2
m
+
1
(
ω
2
x
)
{\displaystyle \cosh(\omega _{1}x^{l})\times \tan ^{2m+1}(\omega _{2}x)}
cosh
(
ω
1
x
l
)
×
tanh
2
m
+
1
(
ω
2
x
)
{\displaystyle \cosh(\omega _{1}x^{l})\times \tanh ^{2m+1}(\omega _{2}x)}
XXXXXXXXXXXXXXXXXXXXXXXXXXX
cosh
(
ω
1
x
2
l
+
1
)
×
sinh
2
m
+
1
(
ω
2
x
2
n
+
1
)
{\displaystyle \cosh(\omega _{1}x^{2l+1})\times \sinh ^{2m+1}(\omega _{2}x^{2n+1})}
/
cosh
(
ω
1
x
2
l
+
1
)
×
sinh
2
m
+
1
(
ω
2
x
2
n
)
{\displaystyle \cosh(\omega _{1}x^{2l+1})\times \sinh ^{2m+1}(\omega _{2}x^{2n})}
/
cosh
(
ω
1
x
2
l
)
×
sinh
2
m
+
1
(
ω
2
x
2
n
+
1
)
{\displaystyle \cosh(\omega _{1}x^{2l})\times \sinh ^{2m+1}(\omega _{2}x^{2n+1})}
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
cosh
(
ω
1
x
2
l
+
1
)
×
tan
2
m
+
1
(
ω
2
x
2
n
+
1
)
{\displaystyle \cosh(\omega _{1}x^{2l+1})\times \tan ^{2m+1}(\omega _{2}x^{2n+1})}
/
cosh
(
ω
1
x
2
l
+
1
)
×
tan
2
m
+
1
(
ω
2
x
2
n
)
{\displaystyle \cosh(\omega _{1}x^{2l+1})\times \tan ^{2m+1}(\omega _{2}x^{2n})}
/
cosh
(
ω
1
x
2
l
)
×
tan
2
m
+
1
(
ω
2
x
2
n
+
1
)
{\displaystyle \cosh(\omega _{1}x^{2l})\times \tan ^{2m+1}(\omega _{2}x^{2n+1})}
cosh
(
ω
1
x
2
l
+
1
)
×
tanh
2
m
+
1
(
ω
2
x
2
n
+
1
)
{\displaystyle \cosh(\omega _{1}x^{2l+1})\times \tanh ^{2m+1}(\omega _{2}x^{2n+1})}
/
cosh
(
ω
1
x
2
l
+
1
)
×
tanh
2
m
+
1
(
ω
2
x
2
n
)
/
cosh
(
ω
1
x
2
l
)
×
tanh
2
m
+
1
(
ω
2
x
2
n
+
1
)
{\displaystyle \cosh(\omega _{1}x^{2l+1})\times \tanh ^{2m+1}(\omega _{2}x^{2n})/\cosh(\omega _{1}x^{2l})\times \tanh ^{2m+1}(\omega _{2}x^{2n+1})}
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
Tan AVEC Tan Tanh Exp
tan
(
ω
1
x
)
×
tan
2
m
(
ω
2
x
)
{\displaystyle \tan(\omega _{1}x)\times \tan ^{2m}(\omega _{2}x)}
tan
(
ω
1
x
)
×
tanh
2
m
(
ω
2
x
)
{\displaystyle \tan(\omega _{1}x)\times \tanh ^{2m}(\omega _{2}x)}
XXXXXXXXXXXXXXXXXXXXXXXX
tan
(
ω
1
x
2
l
+
1
)
×
tan
2
m
+
1
(
ω
x
2
)
{\displaystyle \tan(\omega _{1}x^{2l+1})\times \tan ^{2m+1}(\omega x^{2})}
tan
(
ω
1
x
2
l
+
1
)
×
tanh
2
m
+
1
(
ω
x
2
)
{\displaystyle \tan(\omega _{1}x^{2l+1})\times \tanh ^{2m+1}(\omega x^{2})}
tan
(
ω
1
x
2
l
+
1
)
×
exp
m
(
ω
x
2
)
{\displaystyle \tan(\omega _{1}x^{2l+1})\times \exp ^{m}(\omega x^{2})}
tan
(
ω
1
x
2
l
)
×
tan
2
m
+
1
(
ω
2
x
)
{\displaystyle \tan(\omega _{1}x^{2l})\times \tan ^{2m+1}(\omega _{2}x)}
tan
(
ω
1
x
2
l
)
×
tanh
2
m
+
1
(
ω
2
x
)
{\displaystyle \tan(\omega _{1}x^{2l})\times \tanh ^{2m+1}(\omega _{2}x)}
XXXXXXXXXXXXXXXXXXXXXXXXXXX
tan
(
ω
1
x
2
l
+
1
)
×
tan
2
m
+
1
(
ω
2
x
2
n
+
1
)
{\displaystyle \tan(\omega _{1}x^{2l+1})\times \tan ^{2m+1}(\omega _{2}x^{2n+1})}
/
tan
(
ω
1
x
2
l
+
1
)
×
tan
2
m
+
1
(
ω
2
x
2
n
)
{\displaystyle \tan(\omega _{1}x^{2l+1})\times \tan ^{2m+1}(\omega _{2}x^{2n})}
/
tan
(
ω
1
x
2
l
)
×
tan
2
m
+
1
(
ω
2
x
2
n
+
1
)
{\displaystyle \tan(\omega _{1}x^{2l})\times \tan ^{2m+1}(\omega _{2}x^{2n+1})}
tan
(
ω
1
x
2
l
+
1
)
×
tanh
2
m
(
ω
2
x
2
n
+
1
)
{\displaystyle \tan(\omega _{1}x^{2l+1})\times \tanh ^{2m}(\omega _{2}x^{2n+1})}
/
tan
(
ω
1
x
2
l
+
1
)
×
tanh
2
m
+
1
(
ω
2
x
2
n
)
/
tan
(
ω
1
x
2
l
)
×
tanh
2
m
+
1
(
ω
2
x
2
n
+
1
)
{\displaystyle \tan(\omega _{1}x^{2l+1})\times \tanh ^{2m+1}(\omega _{2}x^{2n})/\tan(\omega _{1}x^{2l})\times \tanh ^{2m+1}(\omega _{2}x^{2n+1})}
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
Tanh AVEC Tanh Exp
tanh
(
ω
1
x
)
×
tanh
2
m
(
ω
2
x
)
{\displaystyle \tanh(\omega _{1}x)\times \tanh ^{2m}(\omega _{2}x)}
XXXXXXXXXXXXXXXXXXXXXXXX
tanh
(
ω
1
x
2
l
+
1
)
×
tanh
2
m
+
1
(
ω
x
2
)
{\displaystyle \tanh(\omega _{1}x^{2l+1})\times \tanh ^{2m+1}(\omega x^{2})}
tanh
(
ω
1
x
2
l
+
1
)
×
exp
m
(
ω
x
2
)
{\displaystyle \tanh(\omega _{1}x^{2l+1})\times \exp ^{m}(\omega x^{2})}
tanh
(
ω
1
x
2
l
)
×
tanh
2
m
+
1
(
ω
2
x
)
{\displaystyle \tanh(\omega _{1}x^{2l})\times \tanh ^{2m+1}(\omega _{2}x)}
XXXXXXXXXXXXXXXXXXXXXXXXXXX
tanh
(
ω
1
x
2
l
+
1
)
×
tanh
2
m
(
ω
2
x
2
n
+
1
)
{\displaystyle \tanh(\omega _{1}x^{2l+1})\times \tanh ^{2m}(\omega _{2}x^{2n+1})}
/
tanh
(
ω
1
x
2
l
+
1
)
×
tanh
2
m
+
1
(
ω
2
x
2
n
)
/
tanh
(
ω
1
x
2
l
)
×
tanh
2
m
+
1
(
ω
2
x
2
n
+
1
)
{\displaystyle \tanh(\omega _{1}x^{2l+1})\times \tanh ^{2m+1}(\omega _{2}x^{2n})/\tanh(\omega _{1}x^{2l})\times \tanh ^{2m+1}(\omega _{2}x^{2n+1})}
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
tan
(
ω
1
x
2
l
+
1
)
×
exp
m
(
ω
x
2
)
{\displaystyle \tan(\omega _{1}x^{2l+1})\times \exp ^{m}(\omega x^{2})}
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
Construite Approchée