A
k
=
2
2
π
∫
0
2
π
y
(
θ
)
s
i
n
(
k
θ
)
d
θ
{\displaystyle A_{k}={\frac {2}{2\pi }}\int _{0}^{2\pi }{y\left(\theta \right)sin\left(k\theta \right)\mathrm {d} \theta }}
A
k
=
2
2
π
[
∫
α
π
−
α
Y
M
s
i
n
(
k
θ
)
d
θ
+
∫
π
+
α
2
π
−
α
−
Y
M
s
i
n
(
k
θ
)
d
θ
]
{\displaystyle A_{k}={\frac {2}{2\pi }}\left[\int _{\alpha }^{\pi -\alpha }{Y_{M}sin\left(k\theta \right)\mathrm {d} \theta }+\int _{\pi +\alpha }^{2\pi -\alpha }{-Y_{M}sin\left(k\theta \right)\mathrm {d} \theta }\right]}
A
k
=
2
Y
M
2
π
{
[
−
c
o
s
(
k
θ
)
k
]
α
π
−
α
+
[
c
o
s
(
k
θ
)
k
]
α
+
π
2
π
−
α
}
{\displaystyle A_{k}={\frac {2Y_{M}}{2\pi }}\left\{\left[{\frac {-cos\left(k\theta \right)}{k}}\right]_{\alpha }^{\pi -\alpha }+\left[{\frac {cos\left(k\theta \right)}{k}}\right]_{\alpha +\pi }^{2\pi -\alpha }\right\}}
A
k
=
Y
M
k
π
[
−
c
o
s
(
k
π
−
k
α
)
+
c
o
s
(
k
α
)
+
c
o
s
(
2
k
π
−
k
α
)
−
c
o
s
(
k
π
+
k
α
)
]
{\displaystyle A_{k}={\frac {Y_{M}}{k\pi }}\left[-cos\left(k\pi -k\alpha \right)+cos\left(k\alpha \right)+cos\left(2k\pi -k\alpha \right)-cos\left(k\pi +k\alpha \right)\right]}
A
k
=
Y
M
k
π
[
−
c
o
s
(
k
π
)
c
o
s
(
k
α
)
−
s
i
n
(
k
π
)
s
i
n
(
k
α
)
+
c
o
s
(
k
α
)
+
c
o
s
(
2
k
π
)
c
o
s
(
k
α
)
+
s
i
n
(
2
k
π
)
s
i
n
(
k
α
)
−
c
o
s
(
k
π
)
c
o
s
(
k
α
)
+
s
i
n
(
k
π
)
s
i
n
(
k
α
)
]
{\displaystyle A_{k}={\frac {Y_{M}}{k\pi }}\left[{\begin{matrix}-cos\left(k\pi \right)cos\left(k\alpha \right)-sin\left(k\pi \right)sin\left(k\alpha \right)\\+cos\left(k\alpha \right)\\+cos\left(2k\pi \right)cos\left(k\alpha \right)+sin\left(2k\pi \right)sin\left(k\alpha \right)\\-cos\left(k\pi \right)cos\left(k\alpha \right)+sin\left(k\pi \right)sin\left(k\alpha \right)\end{matrix}}\right]}
A
k
=
Y
M
k
π
[
−
2
c
o
s
(
k
π
)
c
o
s
(
k
α
)
+
2
c
o
s
(
k
α
)
]
{\displaystyle A_{k}={\frac {Y_{M}}{k\pi }}\left[-2cos\left(k\pi \right)cos\left(k\alpha \right)+2cos\left(k\alpha \right)\right]}
A
k
=
Y
M
k
π
[
(
−
2
c
o
s
(
k
π
)
+
2
)
c
o
s
(
k
α
)
]
{\displaystyle A_{k}={\frac {Y_{M}}{k\pi }}\left[\left(-2cos\left(k\pi \right)+2\right)cos\left(k\alpha \right)\right]}
A
k
=
Y
M
k
π
[
(
−
2
(
−
1
)
k
+
2
)
c
o
s
(
k
α
)
]
{\displaystyle A_{k}={\frac {Y_{M}}{k\pi }}\left[\left(-2\left(-1\right)^{k}+2\right)cos\left(k\alpha \right)\right]}
Pour tout k pair,
A
k
{\displaystyle A_{k}}
est nul.
Pour k impair (k = 2n+1, n >= 0), on a