Variables aléatoires continues/Loi de Cauchy

Début de la boite de navigation du chapitre
Loi de Cauchy
Icône de la faculté
Chapitre no 5
Leçon : Variables aléatoires continues
Chap. préc. :Loi exponentielle
Chap. suiv. :Sommaire
fin de la boite de navigation du chapitre
En raison de limitations techniques, la typographie souhaitable du titre, « Variables aléatoires continues : Loi de Cauchy
Variables aléatoires continues/Loi de Cauchy
 », n'a pu être restituée correctement ci-dessus.

Présentation

modifier

La loi de Cauchy, ou loi de Lorentz, est un exemple simple de loi n'admettant pas d'espérance, ni de moment d'ordre supérieur.

Définition

modifier

La loi de Cauchy est une loi de probabilité pour les variables aléatoires continues.

On la définit au moyen d'une densité de probabilité (voir le chapitre 1).


Fonctions de densité

modifier
 
Densité de la loi de Cauchy, pour différentes valeurs de   et  .

La fonction de densité d'une loi de Cauchy rappelle celle d'une loi normale, à savoir une forme de cloche, mais avec un étalement plus large.

Moments et médiane

modifier

Moments

modifier

En particulier, une loi de Cauchy n'admet aucune espérance formellement. Toutefois :

 

donc

 , ce qui laisse penser à une espérance, et le paramètre   est souvent considéré comme tel.

Médiane

modifier

Toutefois, ce paramètre a une autre propriété qui doit être retenue :

Début d’un théorème
Fin du théorème