a) Nous écrirons tout d’abord :
∫
0
1
2
1
+
2
x
+
1
1
+
1
−
2
x
d
x
=
∫
0
1
2
1
+
2
x
+
1
2
1
+
2
1
2
−
x
d
x
{\displaystyle \int _{0}^{\frac {1}{2}}{\frac {1+{\sqrt {2x+1}}}{1+{\sqrt {1-2x}}}}\,\mathrm {d} x=\int _{0}^{\frac {1}{2}}{\frac {1+{\sqrt {2}}{\sqrt {x+{\frac {1}{2}}}}}{1+{\sqrt {2}}{\sqrt {{\frac {1}{2}}-x}}}}\,\mathrm {d} x}
Posons alors :
x
=
−
1
2
cos
(
2
θ
)
⇒
d
x
=
sin
(
2
θ
)
d
θ
0
→
x
→
1
2
⇒
π
4
→
θ
→
π
2
{\displaystyle x=-{\frac {1}{2}}\cos(2\theta )\Rightarrow \mathrm {d} x=\sin(2\theta )\mathrm {d} \theta \qquad \qquad 0\rightarrow x\rightarrow {\frac {1}{2}}\Rightarrow {\frac {\pi }{4}}\rightarrow \theta \rightarrow {\frac {\pi }{2}}}
Nous obtenons :
∫
0
1
2
1
+
2
x
+
1
1
+
1
−
2
x
d
x
=
∫
π
4
π
2
1
+
2
sin
2
(
θ
)
1
+
2
cos
2
(
θ
)
sin
(
2
θ
)
d
θ
=
∫
π
4
π
2
1
+
2
sin
(
θ
)
1
+
2
cos
(
θ
)
sin
(
2
θ
)
d
θ
=
∫
π
4
π
2
1
2
+
sin
(
θ
)
1
2
+
cos
(
θ
)
sin
(
2
θ
)
d
θ
=
∫
π
4
π
2
sin
(
π
4
)
+
sin
(
θ
)
cos
(
π
4
)
+
cos
(
θ
)
sin
(
2
θ
)
d
θ
=
∫
π
4
π
2
2
sin
(
θ
2
+
π
8
)
cos
(
θ
2
−
π
8
)
2
cos
(
θ
2
+
π
8
)
cos
(
θ
2
−
π
8
)
sin
(
2
θ
)
d
θ
=
∫
π
4
π
2
sin
(
θ
2
+
π
8
)
cos
(
θ
2
+
π
8
)
sin
(
2
θ
)
d
θ
{\displaystyle {\begin{aligned}\int _{0}^{\frac {1}{2}}{\frac {1+{\sqrt {2x+1}}}{1+{\sqrt {1-2x}}}}\,\mathrm {d} x&=\int _{\frac {\pi }{4}}^{\frac {\pi }{2}}{\frac {1+{\sqrt {2}}{\sqrt {\sin ^{2}(\theta )}}}{1+{\sqrt {2}}{\sqrt {\cos ^{2}(\theta )}}}}\sin(2\theta )\mathrm {d} \theta =\int _{\frac {\pi }{4}}^{\frac {\pi }{2}}{\frac {1+{\sqrt {2}}\sin(\theta )}{1+{\sqrt {2}}\cos(\theta )}}\sin(2\theta )\mathrm {d} \theta \\&=\int _{\frac {\pi }{4}}^{\frac {\pi }{2}}{\frac {{\frac {1}{\sqrt {2}}}+\sin(\theta )}{{\frac {1}{\sqrt {2}}}+\cos(\theta )}}\sin(2\theta )\mathrm {d} \theta =\int _{\frac {\pi }{4}}^{\frac {\pi }{2}}{\frac {\sin \left({\frac {\pi }{4}}\right)+\sin(\theta )}{\cos \left({\frac {\pi }{4}}\right)+\cos(\theta )}}\sin(2\theta )\mathrm {d} \theta \\&=\int _{\frac {\pi }{4}}^{\frac {\pi }{2}}{\frac {2\sin \left({\frac {\theta }{2}}+{\frac {\pi }{8}}\right)\cos \left({\frac {\theta }{2}}-{\frac {\pi }{8}}\right)}{2\cos \left({\frac {\theta }{2}}+{\frac {\pi }{8}}\right)\cos \left({\frac {\theta }{2}}-{\frac {\pi }{8}}\right)}}\sin(2\theta )\mathrm {d} \theta =\int _{\frac {\pi }{4}}^{\frac {\pi }{2}}{\frac {\sin \left({\frac {\theta }{2}}+{\frac {\pi }{8}}\right)}{\cos \left({\frac {\theta }{2}}+{\frac {\pi }{8}}\right)}}\sin(2\theta )\mathrm {d} \theta \end{aligned}}}
Posons alors :
y
=
θ
2
+
π
8
⇒
θ
=
2
y
−
π
4
⇒
d
θ
=
2
d
y
π
4
→
θ
→
π
2
⇒
π
4
→
y
→
3
π
8
{\displaystyle y={\frac {\theta }{2}}+{\frac {\pi }{8}}\Rightarrow \theta =2y-{\frac {\pi }{4}}\Rightarrow \mathrm {d} \theta =2\mathrm {d} y\qquad \qquad {\frac {\pi }{4}}\rightarrow \theta \rightarrow {\frac {\pi }{2}}\Rightarrow {\frac {\pi }{4}}\rightarrow y\rightarrow {\frac {3\pi }{8}}}
Et donc :
∫
0
1
2
1
+
2
x
+
1
1
+
1
−
2
x
d
x
=
∫
π
4
π
2
sin
(
θ
2
+
π
8
)
cos
(
θ
2
+
π
8
)
sin
(
2
θ
)
d
θ
=
∫
π
4
3
π
8
sin
(
y
)
cos
(
y
)
sin
(
4
y
−
π
2
)
d
y
=
−
2
∫
π
4
3
π
8
sin
(
y
)
cos
(
y
)
cos
(
4
y
)
d
y
=
−
2
∫
π
4
3
π
8
sin
(
y
)
cos
(
y
)
(
1
−
8
cos
2
(
y
)
sin
2
(
y
)
)
d
y
=
16
∫
π
4
3
π
8
sin
3
(
y
)
cos
(
y
)
d
y
−
2
∫
π
4
3
π
8
sin
(
y
)
cos
(
y
)
d
y
{\displaystyle {\begin{aligned}\int _{0}^{\frac {1}{2}}{\frac {1+{\sqrt {2x+1}}}{1+{\sqrt {1-2x}}}}\,\mathrm {d} x&=\int _{\frac {\pi }{4}}^{\frac {\pi }{2}}{\frac {\sin \left({\frac {\theta }{2}}+{\frac {\pi }{8}}\right)}{\cos \left({\frac {\theta }{2}}+{\frac {\pi }{8}}\right)}}\sin(2\theta )\mathrm {d} \theta =\int _{\frac {\pi }{4}}^{\frac {3\pi }{8}}{\frac {\sin(y)}{\cos(y)}}\sin \left(4y-{\frac {\pi }{2}}\right)\mathrm {d} y\\&=-2\int _{\frac {\pi }{4}}^{\frac {3\pi }{8}}{\frac {\sin(y)}{\cos(y)}}\cos(4y)\mathrm {d} y=-2\int _{\frac {\pi }{4}}^{\frac {3\pi }{8}}{\frac {\sin(y)}{\cos(y)}}\left(1-8\cos ^{2}(y)\sin ^{2}(y)\right)\mathrm {d} y\\&=16\int _{\frac {\pi }{4}}^{\frac {3\pi }{8}}\sin ^{3}(y)\cos(y)\mathrm {d} y-2\int _{\frac {\pi }{4}}^{\frac {3\pi }{8}}{\frac {\sin(y)}{\cos(y)}}\mathrm {d} y\end{aligned}}}
Dans la première intégrale, on pose :
z
=
sin
(
y
)
⇒
d
z
=
cos
(
y
)
d
y
π
4
→
y
→
3
π
8
⇒
1
2
→
z
→
2
+
2
2
{\displaystyle z=\sin(y)\Rightarrow \mathrm {d} z=\cos(y)\mathrm {d} y\qquad \qquad {\frac {\pi }{4}}\rightarrow y\rightarrow {\frac {3\pi }{8}}\Rightarrow {\frac {1}{\sqrt {2}}}\rightarrow z\rightarrow {\frac {\sqrt {2+{\sqrt {2}}}}{2}}}
Dans la deuxième intégrale, on pose :
z
=
cos
(
y
)
⇒
d
z
=
−
sin
(
y
)
d
y
π
4
→
y
→
3
π
8
⇒
1
2
→
z
→
2
−
2
2
{\displaystyle z=\cos(y)\Rightarrow \mathrm {d} z=-\sin(y)\mathrm {d} y\qquad \qquad {\frac {\pi }{4}}\rightarrow y\rightarrow {\frac {3\pi }{8}}\Rightarrow {\frac {1}{\sqrt {2}}}\rightarrow z\rightarrow {\frac {\sqrt {2-{\sqrt {2}}}}{2}}}
On obtient :
∫
0
1
2
1
+
2
x
+
1
1
+
1
−
2
x
d
x
=
16
∫
π
4
3
π
8
sin
3
(
y
)
cos
(
y
)
d
y
+
2
∫
π
4
3
π
8
−
sin
(
y
)
cos
(
y
)
d
y
=
16
∫
1
2
2
+
2
2
z
3
d
z
+
2
∫
1
2
2
−
2
2
d
z
z
=
16
[
z
4
4
]
1
2
2
+
2
2
+
2
[
ln
(
z
)
]
1
2
2
−
2
2
=
16
[
(
2
+
2
2
)
4
4
−
(
1
2
)
4
4
]
+
2
[
ln
(
2
−
2
2
)
−
ln
(
1
2
)
]
=
16
(
(
2
+
2
)
2
64
−
1
16
)
+
2
(
1
2
ln
(
2
−
2
)
−
ln
(
2
)
+
1
2
ln
(
2
)
)
=
1
+
2
2
2
+
ln
(
2
−
2
)
−
ln
(
2
)
=
2
+
1
2
+
ln
(
1
−
1
2
)
{\displaystyle {\begin{aligned}\int _{0}^{\frac {1}{2}}{\frac {1+{\sqrt {2x+1}}}{1+{\sqrt {1-2x}}}}\,\mathrm {d} x&=16\int _{\frac {\pi }{4}}^{\frac {3\pi }{8}}\sin ^{3}(y)\cos(y)\mathrm {d} y+2\int _{\frac {\pi }{4}}^{\frac {3\pi }{8}}{\frac {-\sin(y)}{\cos(y)}}\mathrm {d} y\\&=16\int _{\frac {1}{\sqrt {2}}}^{\frac {\sqrt {2+{\sqrt {2}}}}{2}}z^{3}\mathrm {d} z+2\int _{\frac {1}{\sqrt {2}}}^{\frac {\sqrt {2-{\sqrt {2}}}}{2}}{\frac {\mathrm {d} z}{z}}=16\left[{\frac {z^{4}}{4}}\right]_{\frac {1}{\sqrt {2}}}^{\frac {\sqrt {2+{\sqrt {2}}}}{2}}+2\left[\ln(z)\right]_{\frac {1}{\sqrt {2}}}^{\frac {\sqrt {2-{\sqrt {2}}}}{2}}\\&=16\left[{\frac {\left({\frac {\sqrt {2+{\sqrt {2}}}}{2}}\right)^{4}}{4}}-{\frac {\left({\frac {1}{\sqrt {2}}}\right)^{4}}{4}}\right]+2\left[\ln \left({\frac {\sqrt {2-{\sqrt {2}}}}{2}}\right)-\ln \left({\frac {1}{\sqrt {2}}}\right)\right]\\&=16\left({\frac {(2+{\sqrt {2}})^{2}}{64}}-{\frac {1}{16}}\right)+2\left({\frac {1}{2}}\ln(2-{\sqrt {2}})-\ln(2)+{\frac {1}{2}}\ln(2)\right)\\&={\frac {1+2{\sqrt {2}}}{2}}+\ln(2-{\sqrt {2}})-\ln(2)\\&={\sqrt {2}}+{\frac {1}{2}}+\ln \left(1-{\frac {1}{\sqrt {2}}}\right)\end{aligned}}}
En conclusion, nous avons :
∫
0
1
2
1
+
2
x
+
1
1
+
1
−
2
x
d
x
=
2
+
1
2
−
ln
(
2
+
2
)
{\displaystyle \int _{0}^{\frac {1}{2}}{\frac {1+{\sqrt {2x+1}}}{1+{\sqrt {1-2x}}}}\,\mathrm {d} x={\sqrt {2}}+{\frac {1}{2}}-\ln({\sqrt {2}}+2)}
b) nous avons :
∫
0
1
2
2
2
2
x
2
+
1
+
1
−
2
x
2
d
x
=
2
2
lim
α
→
0
+
∫
α
1
2
2
x
2
+
1
−
1
−
2
x
2
(
2
x
2
+
1
+
1
−
2
x
2
)
(
2
x
2
+
1
−
1
−
2
x
2
)
d
x
=
2
2
lim
α
→
0
+
∫
α
1
2
2
x
2
+
1
−
1
−
2
x
2
2
x
2
+
1
−
1
+
2
x
2
d
x
=
2
2
lim
α
→
0
+
∫
α
1
2
2
x
2
+
1
−
1
−
2
x
2
4
x
2
d
x
=
2
lim
α
→
0
+
(
∫
α
1
2
2
x
2
+
1
2
x
2
d
x
−
∫
α
1
2
1
−
2
x
2
2
x
2
d
x
)
{\displaystyle {\begin{aligned}\int _{0}^{\frac {1}{2}}{\frac {2{\sqrt {2}}}{{\sqrt {2x^{2}+1}}+{\sqrt {1-2x^{2}}}}}\mathrm {d} x&=2{\sqrt {2}}\lim _{\alpha \to 0^{+}}\int _{\alpha }^{\frac {1}{2}}{\frac {{\sqrt {2x^{2}+1}}-{\sqrt {1-2x^{2}}}}{({\sqrt {2x^{2}+1}}+{\sqrt {1-2x^{2}}})({\sqrt {2x^{2}+1}}-{\sqrt {1-2x^{2}}})}}\,\mathrm {d} x\\&=2{\sqrt {2}}\lim _{\alpha \to 0^{+}}\int _{\alpha }^{\frac {1}{2}}{\frac {{\sqrt {2x^{2}+1}}-{\sqrt {1-2x^{2}}}}{2x^{2}+1-1+2x^{2}}}\,\mathrm {d} x=2{\sqrt {2}}\lim _{\alpha \to 0^{+}}\int _{\alpha }^{\frac {1}{2}}{\frac {{\sqrt {2x^{2}+1}}-{\sqrt {1-2x^{2}}}}{4x^{2}}}\,\mathrm {d} x\\&={\sqrt {2}}\lim _{\alpha \to 0^{+}}\left(\int _{\alpha }^{\frac {1}{2}}{\frac {\sqrt {2x^{2}+1}}{2x^{2}}}\,\mathrm {d} x-\int _{\alpha }^{\frac {1}{2}}{\frac {\sqrt {1-2x^{2}}}{2x^{2}}}\,\mathrm {d} x\right)\end{aligned}}}
En intégrant par parties chacune des deux intégrales, nous obtenons :
∫
0
1
2
2
2
2
x
2
+
1
+
1
−
2
x
2
d
x
=
2
lim
α
→
0
+
(
[
−
2
x
2
+
1
2
x
]
α
1
2
−
∫
α
1
2
−
2
x
2
x
×
2
2
x
2
+
1
d
x
−
[
−
1
−
2
x
2
2
x
]
α
1
2
+
∫
α
1
2
−
−
4
x
2
x
×
2
1
−
2
x
2
d
x
)
=
2
lim
α
→
0
+
(
−
3
2
+
2
α
2
+
1
2
α
+
∫
α
1
2
d
x
2
x
2
+
1
+
1
2
−
1
−
2
α
2
2
α
+
∫
α
1
2
d
x
1
−
2
x
2
)
=
2
lim
α
→
0
+
(
1
−
3
2
+
2
α
2
+
1
−
1
−
2
α
2
2
α
+
∫
α
1
2
d
x
2
x
2
+
1
+
∫
α
1
2
d
x
1
−
2
x
2
)
{\displaystyle {\begin{aligned}\int _{0}^{\frac {1}{2}}{\frac {2{\sqrt {2}}}{{\sqrt {2x^{2}+1}}+{\sqrt {1-2x^{2}}}}}\mathrm {d} x&={\sqrt {2}}\lim _{\alpha \to 0^{+}}\left(\left[-{\frac {\sqrt {2x^{2}+1}}{2x}}\right]_{\alpha }^{\frac {1}{2}}-\int _{\alpha }^{\frac {1}{2}}-{\frac {2x}{2x\times 2{\sqrt {2x^{2}+1}}}}\,\mathrm {d} x-\left[-{\frac {\sqrt {1-2x^{2}}}{2x}}\right]_{\alpha }^{\frac {1}{2}}+\int _{\alpha }^{\frac {1}{2}}-{\frac {-4x}{2x\times 2{\sqrt {1-2x^{2}}}}}\,\mathrm {d} x\right)\\&={\sqrt {2}}\lim _{\alpha \to 0^{+}}\left(-{\sqrt {\frac {3}{2}}}+{\frac {\sqrt {2\alpha ^{2}+1}}{2\alpha }}+\int _{\alpha }^{\frac {1}{2}}{\frac {\mathrm {d} x}{\sqrt {2x^{2}+1}}}+{\sqrt {\frac {1}{2}}}-{\frac {\sqrt {1-2\alpha ^{2}}}{2\alpha }}+\int _{\alpha }^{\frac {1}{2}}{\frac {\mathrm {d} x}{\sqrt {1-2x^{2}}}}\right)\\&={\sqrt {2}}\lim _{\alpha \to 0^{+}}\left({\frac {1-{\sqrt {3}}}{\sqrt {2}}}+{\frac {{\sqrt {2\alpha ^{2}+1}}-{\sqrt {1-2\alpha ^{2}}}}{2\alpha }}+\int _{\alpha }^{\frac {1}{2}}{\frac {\mathrm {d} x}{\sqrt {2x^{2}+1}}}+\int _{\alpha }^{\frac {1}{2}}{\frac {\mathrm {d} x}{\sqrt {1-2x^{2}}}}\right)\end{aligned}}}
Comme :
lim
α
→
0
+
(
2
α
2
+
1
−
1
−
2
α
2
2
α
)
=
lim
α
→
0
+
(
(
2
α
2
+
1
−
1
−
2
α
2
)
(
2
α
2
+
1
+
1
−
2
α
2
)
2
α
(
2
α
2
+
1
+
1
−
2
α
2
)
)
=
lim
α
→
0
+
(
2
α
2
+
1
−
1
+
2
α
2
2
α
(
2
α
2
+
1
+
1
−
2
α
2
)
)
=
lim
α
→
0
+
(
4
α
2
2
α
(
2
α
2
+
1
+
1
−
2
α
2
)
)
=
lim
α
→
0
+
(
2
α
2
α
2
+
1
+
1
−
2
α
2
)
=
0
{\displaystyle {\begin{aligned}\lim _{\alpha \to 0^{+}}\left({\frac {{\sqrt {2\alpha ^{2}+1}}-{\sqrt {1-2\alpha ^{2}}}}{2\alpha }}\right)&=\lim _{\alpha \to 0^{+}}\left({\frac {({\sqrt {2\alpha ^{2}+1}}-{\sqrt {1-2\alpha ^{2}}})({\sqrt {2\alpha ^{2}+1}}+{\sqrt {1-2\alpha ^{2}}})}{2\alpha ({\sqrt {2\alpha ^{2}+1}}+{\sqrt {1-2\alpha ^{2}}})}}\right)\\&=\lim _{\alpha \to 0^{+}}\left({\frac {2\alpha ^{2}+1-1+2\alpha ^{2}}{2\alpha ({\sqrt {2\alpha ^{2}+1}}+{\sqrt {1-2\alpha ^{2}}})}}\right)\\&=\lim _{\alpha \to 0^{+}}\left({\frac {4\alpha ^{2}}{2\alpha ({\sqrt {2\alpha ^{2}+1}}+{\sqrt {1-2\alpha ^{2}}})}}\right)\\&=\lim _{\alpha \to 0^{+}}\left({\frac {2\alpha }{{\sqrt {2\alpha ^{2}+1}}+{\sqrt {1-2\alpha ^{2}}}}}\right)\\&=0\end{aligned}}}
il nous reste :
∫
0
1
2
2
2
2
x
2
+
1
+
1
−
2
x
2
d
x
=
1
−
3
+
2
∫
0
1
2
d
x
2
x
2
+
1
+
2
∫
0
1
2
d
x
1
−
2
x
2
{\displaystyle \int _{0}^{\frac {1}{2}}{\frac {2{\sqrt {2}}}{{\sqrt {2x^{2}+1}}+{\sqrt {1-2x^{2}}}}}\mathrm {d} x=1-{\sqrt {3}}+{\sqrt {2}}\int _{0}^{\frac {1}{2}}{\frac {\mathrm {d} x}{\sqrt {2x^{2}+1}}}+{\sqrt {2}}\int _{0}^{\frac {1}{2}}{\frac {\mathrm {d} x}{\sqrt {1-2x^{2}}}}}
Dans la première intégrale du second membre, posons :
x
2
=
tan
(
θ
)
⇒
d
x
=
d
θ
2
cos
2
(
θ
)
0
→
x
→
1
2
⇒
0
→
θ
→
arctan
(
1
2
)
{\displaystyle x{\sqrt {2}}=\tan(\theta )\Rightarrow \mathrm {d} x={\frac {\mathrm {d} \theta }{{\sqrt {2}}\cos ^{2}(\theta )}}\qquad \qquad 0\rightarrow x\rightarrow {\frac {1}{2}}\Rightarrow 0\rightarrow \theta \rightarrow \arctan \left({\frac {1}{\sqrt {2}}}\right)}
Dans la deuxième intégrale du second membre, posons :
x
2
=
sin
(
θ
)
⇒
d
x
=
cos
(
θ
)
2
d
θ
0
→
x
→
1
2
⇒
0
→
θ
→
π
4
{\displaystyle x{\sqrt {2}}=\sin(\theta )\Rightarrow \mathrm {d} x={\frac {\cos(\theta )}{\sqrt {2}}}\mathrm {d} \theta \qquad \qquad 0\rightarrow x\rightarrow {\frac {1}{2}}\Rightarrow 0\rightarrow \theta \rightarrow {\frac {\pi }{4}}}
On obtient :
∫
0
1
2
2
2
2
x
2
+
1
+
1
−
2
x
2
d
x
=
1
−
3
+
2
∫
0
arctan
(
1
2
)
d
θ
2
cos
2
(
θ
)
tan
2
+
1
+
2
∫
0
π
4
cos
(
θ
)
2
1
−
sin
2
(
θ
)
d
θ
=
1
−
3
+
∫
0
arctan
(
1
2
)
d
θ
cos
(
θ
)
+
∫
0
π
4
d
θ
=
1
−
3
+
∫
0
arctan
(
1
2
)
cos
(
θ
)
d
θ
cos
2
(
θ
)
+
[
θ
]
0
π
4
=
1
−
3
+
∫
0
arctan
(
1
2
)
cos
(
θ
)
d
θ
1
−
sin
2
(
θ
)
+
π
4
{\displaystyle {\begin{aligned}\int _{0}^{\frac {1}{2}}{\frac {2{\sqrt {2}}}{{\sqrt {2x^{2}+1}}+{\sqrt {1-2x^{2}}}}}\mathrm {d} x&=1-{\sqrt {3}}+{\sqrt {2}}\int _{0}^{\arctan \left({\frac {1}{\sqrt {2}}}\right)}{\frac {\mathrm {d} \theta }{{\sqrt {2}}\cos ^{2}(\theta ){\sqrt {\tan ^{2}+1}}}}+{\sqrt {2}}\int _{0}^{\frac {\pi }{4}}{\frac {\cos(\theta )}{{\sqrt {2}}{\sqrt {1-\sin ^{2}(\theta )}}}}\mathrm {d} \theta \\&=1-{\sqrt {3}}+\int _{0}^{\arctan \left({\frac {1}{\sqrt {2}}}\right)}{\frac {\mathrm {d} \theta }{\cos(\theta )}}+\int _{0}^{\frac {\pi }{4}}\mathrm {d} \theta \\&=1-{\sqrt {3}}+\int _{0}^{\arctan \left({\frac {1}{\sqrt {2}}}\right)}{\frac {\cos(\theta )\mathrm {d} \theta }{\cos ^{2}(\theta )}}+\left[\theta \right]_{0}^{\frac {\pi }{4}}\\&=1-{\sqrt {3}}+\int _{0}^{\arctan \left({\frac {1}{\sqrt {2}}}\right)}{\frac {\cos(\theta )\mathrm {d} \theta }{1-\sin ^{2}(\theta )}}+{\frac {\pi }{4}}\end{aligned}}}
Posons :
y
=
sin
(
θ
)
⇒
d
y
=
cos
(
θ
)
d
θ
0
→
θ
→
arctan
(
1
2
)
⇒
0
→
θ
→
1
3
{\displaystyle y=\sin(\theta )\Rightarrow \mathrm {d} y=\cos(\theta )\mathrm {d} \theta \qquad \qquad 0\rightarrow \theta \rightarrow \arctan \left({\frac {1}{\sqrt {2}}}\right)\Rightarrow 0\rightarrow \theta \rightarrow {\frac {1}{\sqrt {3}}}}
On a alors :
∫
0
1
2
2
2
2
x
2
+
1
+
1
−
2
x
2
d
x
=
1
−
3
+
∫
0
1
3
d
y
1
−
y
2
+
π
4
=
1
−
3
+
∫
0
1
3
d
y
(
1
−
y
)
(
1
+
y
)
+
π
4
=
1
−
3
+
1
2
∫
0
1
3
(
1
1
−
y
+
1
1
+
y
)
d
y
+
π
4
=
1
−
3
+
1
2
[
ln
(
1
+
y
1
−
y
)
]
0
1
3
+
π
4
=
1
−
3
+
1
2
ln
(
2
+
3
)
+
π
4
{\displaystyle {\begin{aligned}\int _{0}^{\frac {1}{2}}{\frac {2{\sqrt {2}}}{{\sqrt {2x^{2}+1}}+{\sqrt {1-2x^{2}}}}}\mathrm {d} x&=1-{\sqrt {3}}+\int _{0}^{\frac {1}{\sqrt {3}}}{\frac {\mathrm {d} y}{1-y^{2}}}+{\frac {\pi }{4}}\\&=1-{\sqrt {3}}+\int _{0}^{\frac {1}{\sqrt {3}}}{\frac {\mathrm {d} y}{(1-y)(1+y)}}+{\frac {\pi }{4}}\\&=1-{\sqrt {3}}+{\frac {1}{2}}\int _{0}^{\frac {1}{\sqrt {3}}}\left({\frac {1}{1-y}}+{\frac {1}{1+y}}\right)\mathrm {d} y+{\frac {\pi }{4}}\\&=1-{\sqrt {3}}+{\frac {1}{2}}\left[\ln \left({\frac {1+y}{1-y}}\right)\right]_{0}^{\frac {1}{\sqrt {3}}}+{\frac {\pi }{4}}\\&=1-{\sqrt {3}}+{\frac {1}{2}}\ln(2+{\sqrt {3}})+{\frac {\pi }{4}}\end{aligned}}}
En conclusion, nous avons :
∫
0
1
2
2
2
2
x
2
+
1
+
1
−
2
x
2
d
x
=
1
−
3
+
ln
(
2
+
3
)
2
+
π
4
{\displaystyle \int _{0}^{\frac {1}{2}}{\frac {2{\sqrt {2}}}{{\sqrt {2x^{2}+1}}+{\sqrt {1-2x^{2}}}}}\mathrm {d} x=1-{\sqrt {3}}+{\frac {\ln(2+{\sqrt {3}})}{2}}+{\frac {\pi }{4}}}