Nous allons utiliser la formule ː
∫
a
b
u
′
v
=
[
u
v
]
a
b
−
∫
a
b
u
v
′
{\displaystyle \int _{a}^{b}{u'v}=[uv]_{a}^{b}-\int _{a}^{b}{uv'}}
en posant ː
u
′
(
t
)
=
f
″
(
t
)
{\displaystyle u'(t)=f''(t)}
v
(
t
)
=
t
{\displaystyle v(t)=t}
Ce qui entraîne ː
u
(
t
)
=
f
′
(
t
)
{\displaystyle u(t)=f'(t)}
v
′
(
t
)
=
1
{\displaystyle v'(t)=1}
On obtient ː
∫
a
b
f
″
(
t
)
×
t
d
t
=
[
f
′
(
t
)
×
t
]
a
b
−
∫
a
b
f
′
(
t
)
×
1
d
x
{\displaystyle \int _{a}^{b}f''(t)\times t\,\mathrm {d} t=[f'(t)\times t]_{a}^{b}-\int _{a}^{b}f'(t)\times 1\,\mathrm {d} x}
qui s'écrit ː
∫
a
b
t
f
″
(
t
)
d
t
=
b
f
′
(
b
)
−
a
f
′
(
a
)
−
[
f
(
t
)
]
a
b
=
b
f
′
(
b
)
−
a
f
′
(
a
)
−
(
f
(
b
)
−
f
(
a
)
)
=
(
b
f
′
(
b
)
−
f
(
b
)
)
−
(
a
f
′
(
a
)
−
f
(
a
)
)
{\displaystyle \int _{a}^{b}tf''(t)\,\mathrm {d} t=bf'(b)-af'(a)-[f(t)]_{a}^{b}=bf'(b)-af'(a)-(f(b)-f(a))=\left(bf'(b)-f(b)\right)-\left(af'(a)-f(a)\right)}