Série et transformée de Fourier en physique/Comparaison des différents développements
Nous nous proposons d'étudier une fonction simple, une sinusoïde dotée d'une composante continue, afin de comprendre et d'interpréter les résultats obtenus lors du développement en séries de Fourier selon plusieurs méthodes.
Soit une fonction .
Développement en série de Fourier
modifierCoefficients réels ; fonction réelle
modifier
Il est assez évident que , mais la démonstration est développée ci-dessous.
- ,
- Calcul de
- Calcul de
- Calcul de
- Calcul de
Coefficients complexes ; fonction réelle
modifier
Dans ce cas la valeur des coefficients, , aboutissent à l'expression à peine moins évidente :
.
- Calcul de
- Calcul de
- Calcul de
- Calcul de
Coefficients complexes ; fonction complexe
modifierIl est très fréquent pour simplifier les calculs de remplacer la fonction par la formule d'Euler: i.e. fonction car il suffit in fine de ne s'intéresser qu'à la partie réelle de la fonction . Comme l'illustre l'exemple étudié ici, il faut prendre garde à exprimer la fonction de la façon suivante : , où avec .
Comparaison des trois développements
modifierOn peut constater que les deux développements ne donnent pas des résultats similaires. Pour les comparer, nous nous proposons de calculer la puissance du signal ainsi que sa valeur efficace et d'y percevoir l'influence de chacune des harmoniques.
On définit la puissance moyenne comme la moyenne quadratique du signal : elle peut être calculée sur une période.
- .
- .
La valeur efficace est la racine carrée de la moyenne quadratique, alors . Il est à noter que les puissances des différentes harmoniques s'ajoutent tandis qu'il est nécessaire d'élever au carré les valeurs efficaces avant de les ajouter.