a)
∑
k
=
2
n
1
k
3
−
k
=
∑
k
=
2
n
1
k
(
k
+
1
)
(
k
−
1
)
Factorisation
=
−
∑
k
=
2
n
1
k
+
1
2
∑
k
=
2
n
1
k
+
1
+
1
2
∑
k
=
2
n
1
k
−
1
Décomposition en éléments simples
=
−
∑
k
=
2
n
1
k
+
1
2
∑
k
=
3
n
+
1
1
k
+
1
2
∑
k
=
1
n
−
1
1
k
Glissement d'indice
=
−
∑
k
=
3
n
−
1
1
k
−
1
2
−
1
n
+
1
2
∑
k
=
3
n
−
1
1
k
+
1
2
.
1
n
+
1
2
.
1
n
+
1
+
1
2
∑
k
=
3
n
−
1
1
k
+
1
2
+
1
2
.
1
2
Extraction de termes
=
−
1
2
−
1
n
+
1
2
n
+
1
2
(
n
+
1
)
+
1
2
+
1
4
Simplification par les sommes
=
(
n
−
1
)
(
n
+
2
)
4
n
(
n
+
1
)
{\displaystyle {\begin{aligned}\sum _{k=2}^{n}{\frac {1}{k^{3}-k}}&=\sum _{k=2}^{n}{\frac {1}{k(k+1)(k-1)}}\qquad \qquad {\text{Factorisation}}\\&=-\sum _{k=2}^{n}{\frac {1}{k}}+{\frac {1}{2}}\sum _{k=2}^{n}{\frac {1}{k+1}}+{\frac {1}{2}}\sum _{k=2}^{n}{\frac {1}{k-1}}\qquad \qquad {\text{Décomposition en éléments simples}}\\&=-\sum _{k=2}^{n}{\frac {1}{k}}+{\frac {1}{2}}\sum _{k=3}^{n+1}{\frac {1}{k}}+{\frac {1}{2}}\sum _{k=1}^{n-1}{\frac {1}{k}}\qquad \qquad {\text{Glissement d'indice}}\\&=-\sum _{k=3}^{n-1}{\frac {1}{k}}-{\frac {1}{2}}-{\frac {1}{n}}+{\frac {1}{2}}\sum _{k=3}^{n-1}{\frac {1}{k}}+{\frac {1}{2}}.{\frac {1}{n}}+{\frac {1}{2}}.{\frac {1}{n+1}}+{\frac {1}{2}}\sum _{k=3}^{n-1}{\frac {1}{k}}+{\frac {1}{2}}+{\frac {1}{2}}.{\frac {1}{2}}\qquad \qquad {\text{Extraction de termes}}\\&=-{\frac {1}{2}}-{\frac {1}{n}}+{\frac {1}{2n}}+{\frac {1}{2(n+1)}}+{\frac {1}{2}}+{\frac {1}{4}}\qquad \qquad {\text{Simplification par les sommes}}\\&={\frac {(n-1)(n+2)}{4n(n+1)}}\end{aligned}}}
ou plus simplement, par télescopage comme dans l'exercice 2-4 d) :
∑
k
=
2
n
1
k
3
−
k
=
1
2
∑
k
=
2
n
(
1
(
k
−
1
)
k
−
1
k
(
k
+
1
)
)
=
1
2
(
1
(
2
−
1
)
2
−
1
n
(
n
+
1
)
)
=
(
n
−
1
)
(
n
+
2
)
4
n
(
n
+
1
)
{\displaystyle \sum _{k=2}^{n}{\frac {1}{k^{3}-k}}={\frac {1}{2}}\sum _{k=2}^{n}\left({\frac {1}{(k-1)k}}-{\frac {1}{k(k+1)}}\right)={\frac {1}{2}}\left({\frac {1}{(2-1)2}}-{\frac {1}{n(n+1)}}\right)={\frac {(n-1)(n+2)}{4n(n+1)}}}
.
b)
ln
(
1
−
1
k
2
)
=
ln
k
2
−
1
k
2
=
ln
(
k
+
1
)
(
k
−
1
)
k
2
=
ln
(
k
+
1
)
+
ln
(
k
−
1
)
−
2
ln
k
{\displaystyle \ln \left(1-{\frac {1}{k^{2}}}\right)=\ln {\frac {k^{2}-1}{k^{2}}}=\ln {\frac {(k+1)(k-1)}{k^{2}}}=\ln(k+1)+\ln(k-1)-2\ln k}
donc
∑
k
=
2
n
ln
(
1
−
1
k
2
)
=
∑
k
=
2
n
ln
(
k
+
1
)
+
∑
k
=
2
n
ln
(
k
−
1
)
−
2
∑
k
=
2
n
ln
k
{\displaystyle \sum _{k=2}^{n}\ln \left(1-{\frac {1}{k^{2}}}\right)=\sum _{k=2}^{n}\ln(k+1)+\sum _{k=2}^{n}\ln(k-1)-2\sum _{k=2}^{n}\ln k}
.
En faisant un changement d'indice dans la première et la deuxième somme, on obtient :
∑
k
=
2
n
ln
(
1
−
1
k
2
)
=
∑
k
=
3
n
+
1
ln
k
+
∑
k
=
1
n
−
1
ln
k
−
2
∑
k
=
2
n
ln
k
=
∑
k
=
2
n
ln
k
+
ln
(
n
+
1
)
−
ln
2
+
∑
k
=
2
n
ln
k
−
ln
n
−
2
∑
k
=
2
n
ln
k
=
ln
(
n
+
1
)
−
ln
2
−
ln
n
=
ln
n
+
1
2
n
.
{\displaystyle {\begin{aligned}\sum _{k=2}^{n}\ln \left(1-{\frac {1}{k^{2}}}\right)&=\sum _{k=3}^{n+1}\ln k+\sum _{k=1}^{n-1}\ln k-2\sum _{k=2}^{n}\ln k=\sum _{k=2}^{n}\ln k+\ln(n+1)-\ln 2+\sum _{k=2}^{n}\ln k-\ln n-2\sum _{k=2}^{n}\ln k\\&=\ln(n+1)-\ln 2-\ln n=\ln {\frac {n+1}{2n}}.\end{aligned}}}
Plus simplement, par télescopage :
∑
k
=
2
n
ln
(
1
−
1
k
2
)
=
∑
k
=
2
n
(
ln
k
+
1
k
−
ln
k
k
−
1
)
=
ln
n
+
1
n
−
ln
2
2
−
1
=
ln
n
+
1
2
n
{\displaystyle \sum _{k=2}^{n}\ln \left(1-{\frac {1}{k^{2}}}\right)=\sum _{k=2}^{n}\left(\ln {\frac {k+1}{k}}-\ln {\frac {k}{k-1}}\right)=\ln {\frac {n+1}{n}}-\ln {\frac {2}{2-1}}=\ln {\frac {n+1}{2n}}}
.