En raison de limitations techniques, la typographie souhaitable du titre, «
Exercice : Relations trigonométriques 2Trigonométrie/Exercices/Relations trigonométriques 2 », n'a pu être restituée correctement ci-dessus.
Démontrer que les expressions :
1°
cos
2
x
−
2
cos
a
cos
x
cos
(
a
+
x
)
+
cos
2
(
a
+
x
)
{\displaystyle \cos ^{2}x-2\cos a\cos x\cos(a+x)+\cos ^{2}(a+x)}
2°
cos
2
x
+
cos
2
(
2
π
3
+
x
)
+
cos
2
(
2
π
3
−
x
)
{\displaystyle \cos ^{2}x+\cos ^{2}\left({\frac {2\pi }{3}}+x\right)+\cos ^{2}\left({\frac {2\pi }{3}}-x\right)}
sont indépendantes de
x
{\displaystyle x}
.
On suppose que
cos
x
=
a
b
+
c
,
cos
y
=
b
c
+
a
et
cos
z
=
c
a
+
b
{\displaystyle \cos x={\frac {a}{b+c}},\quad \cos y={\frac {b}{c+a}}\quad {\text{et}}\quad \cos z={\frac {c}{a+b}}}
.
Montrer que
tan
2
x
2
+
tan
2
y
2
+
tan
2
z
2
=
1
{\displaystyle \tan ^{2}{\frac {x}{2}}+\tan ^{2}{\frac {y}{2}}+\tan ^{2}{\frac {z}{2}}=1}
.
Solution
1
−
a
b
+
c
1
+
a
b
+
c
+
1
−
b
c
+
a
1
+
b
c
+
a
+
1
−
c
a
+
b
1
+
c
a
+
b
=
1
{\displaystyle {\frac {1-{\frac {a}{b+c}}}{1+{\frac {a}{b+c}}}}+{\frac {1-{\frac {b}{c+a}}}{1+{\frac {b}{c+a}}}}+{\frac {1-{\frac {c}{a+b}}}{1+{\frac {c}{a+b}}}}=1}
.
Soient
a
{\displaystyle a}
,
b
{\displaystyle b}
et
c
{\displaystyle c}
les réels compris entre
−
π
2
{\displaystyle -{\frac {\pi }{2}}}
et
π
2
{\displaystyle {\frac {\pi }{2}}}
tels que
tan
a
=
1
2
,
tan
b
=
1
5
et
tan
c
=
1
8
{\displaystyle \tan a={\frac {1}{2}},\quad \tan b={\frac {1}{5}}\quad {\text{et}}\quad \tan c={\frac {1}{8}}}
.
Calculer
a
+
b
+
c
{\displaystyle a+b+c}
.
Solution
On a
a
,
b
,
c
∈
]
0
,
π
2
[
{\displaystyle a,b,c\in \left]0,{\frac {\pi }{2}}\right[}
et
tan
(
a
+
b
)
=
1
2
+
1
5
1
−
1
2
1
5
=
7
9
>
0
{\displaystyle \tan(a+b)={\frac {{\frac {1}{2}}+{\frac {1}{5}}}{1-{\frac {1}{2}}{\frac {1}{5}}}}={\frac {7}{9}}>0}
donc
a
+
b
∈
]
0
,
π
2
[
{\displaystyle a+b\in \left]0,{\frac {\pi }{2}}\right[}
, et
tan
(
a
+
b
+
c
)
=
7
9
+
1
8
1
−
7
9
1
8
=
1
{\displaystyle \tan(a+b+c)={\frac {{\frac {7}{9}}+{\frac {1}{8}}}{1-{\frac {7}{9}}{\frac {1}{8}}}}=1}
, donc
a
+
b
+
c
=
π
4
{\displaystyle a+b+c={\frac {\pi }{4}}}
.
Démontrez les identités :
1°
sin
(
a
+
b
)
sin
(
a
−
b
)
+
sin
(
b
+
c
)
sin
(
b
−
c
)
+
sin
(
c
+
a
)
sin
(
c
−
a
)
=
0
{\displaystyle \sin(a+b)\sin(a-b)+\sin(b+c)\sin(b-c)+\sin(c+a)\sin(c-a)=0}
;
2°
cos
(
a
+
b
)
sin
(
a
−
b
)
+
cos
(
b
+
c
)
sin
(
b
−
c
)
+
cos
(
c
+
a
)
sin
(
c
−
a
)
=
0
{\displaystyle \cos(a+b)\sin(a-b)+\cos(b+c)\sin(b-c)+\cos(c+a)\sin(c-a)=0}
;
3°
cos
(
a
+
b
)
cos
(
a
−
b
)
+
cos
(
b
+
c
)
cos
(
b
−
c
)
+
cos
(
c
+
a
)
cos
(
c
−
a
)
=
2
(
cos
2
a
+
cos
2
b
+
cos
2
c
)
−
3
{\displaystyle \cos(a+b)\cos(a-b)+\cos(b+c)\cos(b-c)+\cos(c+a)\cos(c-a)=2(\cos ^{2}a+\cos ^{2}b+\cos ^{2}c)-3}
;
4°
tan
a
+
tan
b
+
tan
c
−
tan
a
tan
b
tan
c
=
sin
(
a
+
b
+
c
)
cos
a
cos
b
cos
c
{\displaystyle \tan a+\tan b+\tan c-\tan a\tan b\tan c={\frac {\sin(a+b+c)}{\cos a\cos b\cos c}}}
.
Solution
1° Immédiat car
sin
(
x
+
y
)
sin
(
x
−
y
)
=
cos
2
y
−
cos
2
x
2
{\displaystyle \sin(x+y)\sin(x-y)={\frac {\cos 2y-\cos 2x}{2}}}
.
2° Immédiat car
cos
(
x
+
y
)
sin
(
x
−
y
)
=
sin
2
x
−
sin
2
y
2
{\displaystyle \cos(x+y)\sin(x-y)={\frac {\sin 2x-\sin 2y}{2}}}
.
3°
cos
(
a
+
b
)
cos
(
a
−
b
)
+
cos
(
b
+
c
)
cos
(
b
−
c
)
+
cos
(
c
+
a
)
cos
(
c
−
a
)
=
cos
2
a
+
cos
2
b
+
cos
2
c
=
2
(
cos
2
a
+
cos
2
b
+
cos
2
c
)
−
3
{\displaystyle \cos(a+b)\cos(a-b)+\cos(b+c)\cos(b-c)+\cos(c+a)\cos(c-a)=\cos 2a+\cos 2b+\cos 2c=2(\cos ^{2}a+\cos ^{2}b+\cos ^{2}c)-3}
.
4°
(
tan
a
+
tan
b
+
tan
c
−
tan
a
tan
b
tan
c
)
cos
a
cos
b
cos
c
=
sin
a
cos
b
cos
c
+
sin
b
cos
c
cos
a
+
sin
c
cos
a
cos
b
−
sin
a
sin
b
sin
c
=
sin
(
a
+
b
)
cos
c
+
cos
(
a
+
b
)
sin
c
=
sin
(
a
+
b
+
c
)
{\displaystyle \left(\tan a+\tan b+\tan c-\tan a\tan b\tan c\right)\cos a\cos b\cos c=\sin a\cos b\cos c+\sin b\cos c\cos a+\sin c\cos a\cos b-\sin a\sin b\sin c=\sin(a+b)\cos c+\cos(a+b)\sin c=\sin(a+b+c)}
.
Démontrez les identités :
1°
(
cot
a
2
−
tan
a
2
)
2
=
4
1
−
2
tan
a
cot
2
a
{\displaystyle \left(\cot {\frac {a}{2}}-\tan {\frac {a}{2}}\right)^{2}={\frac {4}{1-2\tan a\cot 2a}}}
;
2°
cot
(
π
4
+
a
2
)
+
tan
(
π
4
+
a
2
)
=
2
cos
a
{\displaystyle \cot \left({\frac {\pi }{4}}+{\frac {a}{2}}\right)+\tan \left({\frac {\pi }{4}}+{\frac {a}{2}}\right)={\frac {2}{\cos a}}}
;
3°
cot
2
a
+
tan
2
a
=
2
3
+
cos
4
a
1
−
cos
4
a
{\displaystyle \cot ^{2}a+\tan ^{2}a=2\,{\frac {3+\cos 4a}{1-\cos 4a}}}
;
4°
sin
2
a
1
+
cos
2
a
×
cos
a
1
+
cos
a
=
tan
a
2
{\displaystyle {\frac {\sin 2a}{1+\cos 2a}}\times {\frac {\cos a}{1+\cos a}}=\tan {\frac {a}{2}}}
.
Solution
1°
4
1
−
2
tan
a
cot
2
a
=
4
tan
2
t
=
(
1
−
tan
2
a
2
tan
a
2
)
2
=
(
cot
a
2
−
tan
a
2
)
2
{\displaystyle {\frac {4}{1-2\tan a\cot 2a}}={\frac {4}{\tan ^{2}t}}=\left({\frac {1-\tan ^{2}{\frac {a}{2}}}{\tan {\frac {a}{2}}}}\right)^{2}=\left(\cot {\frac {a}{2}}-\tan {\frac {a}{2}}\right)^{2}}
.
2°
cot
b
+
tan
b
=
1
+
tan
2
b
tan
b
=
2
sin
2
b
=
2
cos
(
2
b
−
π
2
)
{\displaystyle \cot b+\tan b={\frac {1+\tan ^{2}b}{\tan b}}={\frac {2}{\sin 2b}}={\frac {2}{\cos \left(2b-{\frac {\pi }{2}}\right)}}}
.
3° Soit
t
=
tan
a
{\displaystyle t=\tan a}
.
2
3
+
cos
4
a
1
−
cos
4
a
=
2
+
2
cos
2
2
a
sin
2
2
a
=
2
1
+
(
1
−
t
2
1
+
t
2
)
2
(
2
t
1
+
t
2
)
2
=
(
1
+
t
2
)
2
+
(
1
−
t
2
)
2
2
t
2
=
1
t
2
+
t
2
{\displaystyle 2\,{\frac {3+\cos 4a}{1-\cos 4a}}={\frac {2+2\cos ^{2}2a}{\sin ^{2}2a}}=2{\frac {1+\left({\frac {1-t^{2}}{1+t^{2}}}\right)^{2}}{\left({\frac {2t}{1+t^{2}}}\right)^{2}}}={\frac {\left(1+t^{2}\right)^{2}+\left(1-t^{2}\right)^{2}}{2t^{2}}}={\frac {1}{t^{2}}}+t^{2}}
.
4°
sin
2
a
1
+
cos
2
a
×
cos
a
1
+
cos
a
=
2
sin
a
cos
2
a
4
cos
2
a
cos
2
a
2
=
4
cos
a
2
sin
a
2
4
cos
2
a
2
=
tan
a
2
{\displaystyle {\frac {\sin 2a}{1+\cos 2a}}\times {\frac {\cos a}{1+\cos a}}={\frac {2\sin a{\cancel {\cos ^{2}a}}}{4{\cancel {\cos ^{2}a}}\cos ^{2}{\frac {a}{2}}}}={\frac {{\cancel {4}}\cos {\frac {a}{2}}\sin {\frac {a}{2}}}{{\cancel {4}}\cos ^{2}{\frac {a}{2}}}}=\tan {\frac {a}{2}}}
.