Calcul avec les nombres complexes/Équations

Début de la boite de navigation du chapitre


Les équations dans l’ensemble des complexes se résolvent de la même façon que celles dans l’ensemble des réels. Il ne faut pas oublier que les nombres réels sont des nombres complexes particuliers, il faut donc les donner si nécessaire. Il est parfois nécessaire de poser mais à d’autres moments, laisser z facilite les calculs.

Équations
Icône de la faculté
Chapitre no 8
Leçon : Calcul avec les nombres complexes
Chap. préc. :Écriture exponentielle et trigonométrique
Chap. suiv. :Formules de base
fin de la boite de navigation du chapitre
En raison de limitations techniques, la typographie souhaitable du titre, « Calcul avec les nombres complexes : Équations
Calcul avec les nombres complexes/Équations
 », n'a pu être restituée correctement ci-dessus.

Pour comprendre comment résoudre ces équations, nous allons utiliser des exemples.

Équations du premier degré

modifier

Équations du premier degré avec uniquement  

modifier

Dans ce genre d'équation, il n’est pas utile de poser  .

Début de l'exemple
Fin de l'exemple


Équations du premier degré avec   et  

modifier

À l'inverse, il est nécessaire ici de poser   et  , et il faut appliquer la définition de l'égalité de deux nombres complexes.

Début de l'exemple
Fin de l'exemple


Équations du second degré

modifier

Équation en  

modifier
Début de l'exemple
Fin de l'exemple


Équations en  

modifier

Nous pouvons résoudre des équations simples où  . Il suffit dans ce cas de calculer le déterminant complexe.

Début de l'exemple
Fin de l'exemple


Nous pouvons aussi résoudre des équations où  . Seulement, nous avons généralement des informations en plus dans l'énoncé. Soit il faut trouver une solution imaginaire pure ou bien une solution réelle. Dans ce cas là, il faut remplacer  .

Début de l'exemple
Fin de l'exemple


Équations particulières du troisième degré

modifier

Comme pour les équations réelles du troisième degré, nous ne savons pas résoudre ce type d'équation, pour trouver les solutions, nous devons trouver une solution évidente ou nous devons être guidés. Les solutions évidentes sont toujours très simples, c'est-à-dire  . Si la solution n’est pas assez simple, l'exercice demande de vérifier une solution.

Début de l'exemple
Fin de l'exemple