Fonctions d'une variable réelle/Exercices/Continuité

Continuité
Image logo représentative de la faculté
Exercices no1
Leçon : Fonctions d'une variable réelle
Chapitre du cours : Continuité

Exercices de niveau 14.

Exo préc. :Sommaire
Exo suiv. :Inégalités
Icon falscher Titel.svg
En raison de limitations techniques, la typographie souhaitable du titre, « Exercice : Continuité
Fonctions d'une variable réelle/Exercices/Continuité
 », n'a pu être restituée correctement ci-dessus.




Soient et une application continue.

On suppose que admet des limites (finies ou infinies) en et  :

.

Exercice 1Modifier

Montrer que   atteint toutes les valeurs strictement comprises entre   et  .

Exercice 2Modifier

Montrer que si   et   sont finies, alors   est bornée.

Exercice 3Modifier

On suppose que   (finie ou infinie).

1) Montrer que si   prend au moins une valeur strictement inférieure à cette limite (par exemple si  ), alors   admet un minimum.

Conseil : Rien ne vaut un bon schéma. Il faut alors utiliser la définition de la limite et…

2) En déduire que (sans cette dernière hypothèse)   admet un extremum.

Pour une généralisation des exercices 2 et 3, voir Espaces vectoriels normés/Exercices/Dimension finie#Exercice 3-3 : extrema d'une fonction continue (niveau 15).

Exercice 4Modifier

On pose :

 .

1) Redémontrer le résultat de l'exercice 2 en prolongeant par continuité la fonction  .

2) Redémontrer le résultat de l'exercice 1 en prolongeant par continuité la fonction  .

3) Redémontrer les résultats de l'exercice 3 à l'aide du même prolongement de  .

Exercice 5Modifier

Sur  , soit   une fonction croissante telle que   soit décroissante.

  1. Montrer que   est continue.
  2. Montrer que si   n'est pas identiquement nulle alors elle est strictement positive.
  3. Donner un exemple de telle fonction.

Référence et liens externesModifier