Début de la boite de navigation du chapitre
PGCD
Icône de la faculté
Chapitre no 3
Leçon : Initiation à l'arithmétique
Chap. préc. :Division euclidienne
Chap. suiv. :Nombres premiers

Exercices :

Sujets de brevet
fin de la boite de navigation du chapitre
En raison de limitations techniques, la typographie souhaitable du titre, « Initiation à l'arithmétique : PGCD
Initiation à l'arithmétique/PGCD
 », n'a pu être restituée correctement ci-dessus.

Plus grand diviseur commun de deux nombres entiers positifs

modifier


Début de l'exemple
Fin de l'exemple


Le mot algorithme vient du mathématicien arabe du XIe siècle Al-Khwarizmi.

Euclide est un savant grec du IIIe siècle avant J.C., auteur des fameux Éléments.

Un algorithme est une procédure automatisée qui permet de trouver un résultat « sans réfléchir ». Par exemple, quand on pose une opération, on applique un algorithme.

L'algorithme d'Euclide est une méthode pour trouver le PGCD de deux nombres entiers par divisions euclidiennes successives.

Propriété de transmission du PGCD

modifier


Début de l'exemple
Fin de l'exemple


Algorithme d’Euclide : exemple

modifier

On veut le PGCD de   et  .

On effectue les divisions successives :

  ;
  ;
  ;
 .

Le dernier reste non nul est   donc  .

Applications du PGCD

modifier

Nombres premiers entre eux

modifier

Définition

modifier


PGCD de deux nombres premiers entre eux

modifier

Exemple

modifier

25 et 36 sont premiers entre eux (bien qu’aucun des deux ne soit premier !) car leur PGCD vaut 1.

Contre-exemple

modifier

24 et 36 ne sont pas premiers entre eux, car leur PGCD vaut 12 (leurs diviseurs communs sont donc : 1, 2, 3, 4, 6, 12).

Rendre une fraction irréductible

modifier



Début de l'exemple
Fin de l'exemple