Initiation aux matrices/Puissance d'une matrice

Début de la boite de navigation du chapitre

Dans ce chapitre, nous allons étudier la puissance d'une matrice carrée. Calculer la puissance d'une matrice est une opération assez utile. Nous le verrons en particulier lorsque nous étudierons les applications des matrices aux suites numériques. Malheureusement, le calcul d'une matrice à la puissance r nécessite des outils qui dépassent le cadre élémentaire de cette leçon. Nous allons toutefois donner quelques indications pour préparer les leçons de niveau supérieur qui traitent cette opération de façon plus complète.

Puissance d'une matrice
Icône de la faculté
Chapitre no 4
Leçon : Initiation aux matrices
Chap. préc. :Inverse d'une matrice
Chap. suiv. :Applications aux suites

Exercices :

Puissance d'une matrice
fin de la boite de navigation du chapitre
En raison de limitations techniques, la typographie souhaitable du titre, « Initiation aux matrices : Puissance d'une matrice
Initiation aux matrices/Puissance d'une matrice
 », n'a pu être restituée correctement ci-dessus.

Définition

modifier

La puissance d'une matrice est similaire à la puissance d'un nombre. Soit   une matrice carrée d'ordre  . Soit r un entier positif.

Si r est différent de 0, élever la matrice   à la puissance r, c'est multiplier r fois la matrice   par elle-même. On notera   cette opération.

Si r est égal à 0, On posera  .

(Nous avons noté la puissance r au lieu de n pour ne pas confondre avec l'ordre n des matrices carrées.)

 .

Par exemple :

 .


Puissance d'une matrice diagonale

modifier

Notre principale préoccupation lorsque l'on veut élever une matrice à la puissance r est d'exprimer le résultat sous forme d'une matrice dont tous les coefficients s'expriment en fonction de r. Cette opération n'est pas simple dans le cas général, mais il existe un cas particulier où cette opération ne pose pas de problème, c'est quand la matrice est diagonale.

En effet, on peut remarquer que lorsque l'on multiplie deux matrices diagonales entre elles, cela revient à multiplier les coefficients de la diagonale deux à deux.

Par exemple, pour les matrices carrées diagonales d'ordre trois, nous avons :

 

Plus généralement, on montre par récurrence que pour élever une matrice diagonale à la puissance r, il suffit d'élever chaque coefficient de la diagonale à la puissance r.

Par exemple, pour les matrices carrées diagonales d'ordre trois, nous avons :

 .

Puissance d'une matrice diagonalisable

modifier

Nous avons vu au chapitre précédent qu'une matrice   est dite diagonalisable s'il existe une matrice inversible   et une matrice diagonale   vérifiant :

 .

Cette relation nous permet de calculer sans trop de difficultés la matrice   :

 .

En effet, plus généralement :

Si   alors  .



Début de l'exemple
Fin de l'exemple


Matrice nilpotente

modifier

On dit qu'une matrice carrée   est nilpotente s'il existe un entier   tel que :

 

  représentant une matrice où tous les coefficients sont nuls.


 

Exemple.

Soit  , la matrice définie par :

 

Par le calcul, on peut vérifier que :

 

et

 

  est donc une matrice nilpotente d'ordre 3.

Puissances d'une matrice inversible

modifier

Nous avons vu au chapitre précédent qu'un produit de matrices inversibles   et   est inversible, et  . On en déduit facilement par récurrence que si une matrice carrée   est inversible, alors toutes ses puissances le sont aussi, et pour tout entier positif r :

 .

Cette matrice inverse de puissance (ou puissance d'inverse) sera notée simplement  .