Recherche:Cardinal quantitatif

Cardinal quantitatif

Toute réaction ou commentaire par rapport à ce travail de recherche sont les bienvenus sur cette page de discussion.

Cette page fait partie de l’espace recherche de Wikiversité et dépend de la faculté mathématiques. Pour plus d'informations, consultez le portail de l'espace recherche ou rendez-vous sur l'index des travaux de recherche par faculté.
Ce travail de recherche est rattaché au département Fondements logiques et ensemblistes des mathématiques‎.


Notion, en rapport avec la théorie des ensembles et des infinis mathématiques, et notion, en rapport avec la notion de cardinal d'un ensemble et en particulier, en rapport avec la notion de cardinal d'un ensemble infini.


Guillaume FOUCART 612BRJMDLO5XLHC

Remarque : Les fichiers sur fichier-pdf.fr qui ont un statut privé sont bel et bien accessibles, qu'on en soit le propriétaire ou non, et ce en ayant la connaissance de leurs liens et en créant un compte : Il faut laisser ouverte la page initiale où sont listés les liens des fichiers ayant un statut privé et/ou y revenir après avoir créé ou ouvert un compte, tout en maintenant ce dernier ouvert.


NB : Les formules en LaTeX présentes dans la table des matières ne s'affichent plus correctement, depuis novembre 2021.

Dernière version de "Recherche:Cardinal quantitatif (table des matières, simplifiée) du 03-10-2021 à 15h13" enregistrée en PDF, où la table des matières s'affichait correctement (fichier hébergé sur https://www.fichier-pdf.fr)


Mises à part les discussions associées à mes travaux mathématiques sur la Wikiversité, vous pouvez aussi vous rendre sur mon forum pour en discuter et les critiquer de manière constructive, en tant qu'invité ou en tant que membre (mais il faudra alors créer un compte pour vous y loguer) :

Tous les liens et toutes les discussions à propos de ces travaux mathématiques sur les forums de mathématiques : "Les-mathematiques.net" et "Maths-Forum" sont désormais périmés et obsolètes. La présente version de mes travaux mathématiques qui est aussi celle qui fait foi, est la version actualisée de ces derniers. De plus, de nombreux commentaires qui sont relatifs à ces discussions ont été donnés dans la page de discussion associée à la présente page de recherche, ainsi que dans une partie des "Passages que l'on peut omettre" et sur mon forum.

Si je me comportais, pour une bonne part, comme un shtameur (au sens de la rubrique SHTAM actuelle, qui est l'anagramme inversé de MATHS, et qui a été conçue pour être la poubelle officieuse Des-mathemathiques.net c-à-d regroupant, la majeure partie des messages et des discussions fantaisistes et/ou en partie ou en grande partie mal exprimés, en l'état, et/ou en partie ou grande partie incompréhensibles, en l'état, et/ou délirants et/ou ayant de nombreux passages faux ou erronés et/ou peu mathématiques et/ou non mathématiques Des-mathematiques.net) sur Les-mathematiques.net lorsque j'ai posté et parlé de mes travaux à leurs débuts en 2006-2007 (encore que Michel COSTE a montré qu'il y avait une partie de vraie dans ce que je disais et qui était un cas particulier d'un résultat qui avait déjà été établi par des mathématiciens, mais qui était relativement peu connu et peu présent dans la littérature) puis pendant une certaine période, ensuite : Un jour, ce ne sera plus le cas : Ce n'est qu'une question de temps (Et ce n'est peut-être déjà plus le cas, le 20-08-2023 à 10h46, y compris dans la partie spéculative par opposition à la partie connue). Il faut dire que ma façon de faire et de procéder concernant mes travaux a été d'abord de produire une matière brute truffée d'erreurs et de déchets, puis ensuite de l'élaguer, de la raffiner, de la retravailler, de la préciser, de la corriger et de la compléter, peu à peu, en suivant une intuition et une ligne directrice qui ne m'ont jamais fait défaut jusqu'à présent. NB : La plupart des shtameurs racontent n'importe quoi ou des banalités ou des choses déjà bien connues ou déjà bien établies depuis longtemps, et inflexibles et imperturbables qu'ils sont, ne tiennent quasiment jamais compte des remarques et des recommandations qui leur sont faites voire les ignorent totalement, et qui tout en n'améliorant jamais leurs travaux, avec le temps, ne renoncent jamais à ces derniers et ne se remettent jamais en question. Ce qui n'est pas mon cas.

Andrew Wiles, concernant les travaux qu'il consacra à la preuve du, désormais, théorème de Fermat-Wiles, a dû modifier ces derniers, un très grand nombre de fois avant d'obtenir leur version finale et définitive, mais il l'a fait en privé. Moi, j'ai fait la même chose, dans une bien moindre mesure, concernant les miens qui ne sont pas encore achevés et qui sont, en comparaison, relativement plus modestes, et je l'ai fait aussi en public et je continue, désormais, de le faire en public, sur la Wikiversité. De plus, Andrew Wiles a lu et/ou a consulté un très grand nombre d'articles et d'ouvrages, ce que je n'ai pas été obligé de faire.

Les travaux de recherche peuvent prendre des années avant d'aboutir à une version finale et définitive. La seule différence entre moi et d'autres, c'est que, moi, j'expose et j'ai exposé mes travaux pendant toute la période durant laquelle ils en étaient et en sont, encore, à un stade inachevé voire, en partie, dans un état de brouillon, en public, au lieu de l'avoir fait en privé, mais fondamentalement c'est la même chose, même si ce faisant, on ne peut recevoir de l'aide qu'en privé, mais avec l'avantage de beaucoup moins s'exposer aux railleries, aux moqueries et aux incompréhensions. Les moeurs et la mentalité du milieu parfois injustes, hypocrites et pas toujours justifiées sont ainsi faites que contrairement à ceux qui, à un stade inachevé, n'exposent leurs travaux qu'en privé et ne les exposent en public que lorsqu'ils estiment qu'ils sont parfaitement achevés, ceux qui exposent leurs travaux encore inachevés en public risquent gros et risquent de rencontrer pas mal de problèmes concernant le sérieux et la crédibilité de ces derniers, voire concernant le sérieux, la crédibilité et la réputation de leur propre personne et ce de façon durable voire irréversible, et ce même s'ils préviennent, à l'avance ou en cours de route, qu'il s'agit bien de travaux inachevés et de brouillons, et même si le sérieux et la crédibilité de leurs travaux peuvent finir par s'avérer et se confirmer, de plus en plus, au cours des nouvelles versions et avec le temps, et en particulier dans la version finale, alors qu'en passer par de tels stades d'inachèvement voire de brouillon est, tout à fait, nécessaire, normal, naturel et plus que courant. Mise à part la crainte qu'on nous vole nos travaux (je rappelle que toutes les versions successives de mes travaux depuis octobre 2017 sont datées et enregistrées sur (la) Wikiversité, ce qui, normalement, avec la licence qui leur est attribuée sur ce site, m'en assure la paternité) voire qu'on les améliore, qu'on les poursuive ou qu'on les prolonge, à notre insu et indépendamment de nous, je ne vois pas l'utilité de ne publier ou de n'exposer que la version finale, en public, pour ne surtout pas et absolument pas faire un pet de travers et se conformer à la doxa.

J'ai posté des versions de mes travaux ou j'en ai fait part d'une manière relativement incomplète, informelle, brouillonne, inachevée, maladroite et parfois fausse ou erronnée, sur certains forums de mathématiques (Les-mathematiques.net et Maths-Forum), d'où les réactions défavorables que j'ai pues avoir sur ces derniers, ces derniers ne prenant, pas suffisamment, en compte, cette phase ou cette période des travaux pourtant importante, conséquente et fondamentale, et qui peut durer longtemps.

Malgré le foisonnement de titres et de sous-titres : Avec une échelle réduite de 50%, les travaux, dont il est question, ne font que 56 pages, au format A4, le 29-03-2021, et encore ils sont, relativement, aérés et espacés. Certes, ils ont, trompeusement et faussement, l'allure et l'apparence d'un mille-feuilles argumentatif, mais, concernant la partie spéculative, ils sont, peut-être, attaquables, et s'ils le sont, ils peuvent, peut-être, être démontés et anéantis, uniquement, concernant 2 ou 3 points fondamentaux voire cruciaux, bien ciblés. En moyenne, chaque sous-partie élémentaire mentionnée dans la table des matières est relativement {courte|brève} : Il n'y a donc pas lieu d'être effrayé par le grand nombre de sous-parties élémentaires figurant dans la table des matières. Par ailleurs, il y a beaucoup d'exemples illustratifs.

VOICI LA TABLE DES MATIÈRES DÉTAILLÉE LE PLUS POSSIBLE (Il faut d'abord lire les titres en gras. J'aurais aimé pouvoir disposer d'une table des matières qui se déploie au fur et à mesure que l'on avance en allant des titres généraux aux titres particuliers. Il est très rare que les définitions, les propositions, les lemmes, les théorèmes, les remarques, etc ..., figurent dans une table des matières ou dans un sommaire, et de fait, ma table des matières s'en retrouve fortement alourdie, mais il en est ainsi, car cela est plus {pratique|commode} dans le cas où il m'arriverait d'avoir des modifications à faire.) :

[NB : Désormais, on peut aussi consulter la version de mes travaux, avec une table des matières, simplifiée (Cf. liens ci-dessus).]


Cardinal quantitatif sur et sur , pour Modifier

Introduction Modifier

Remarque : L'introduction n'est qu'une petite partie de mes travaux : N'oubliez pas aussi d'aller jeter un coup d'oeil sur le reste ou de le survoler ou de le consulter. Si dans l'introduction, il y a beaucoup de texte : Dans le reste, il y a beaucoup de formalisme et de formules mathématiques.

Partie principale Modifier

J'utiliserai une terminologie personnelle, en renommant parfois autrement certaines notions existantes.


Soit .


En particulier, je désignerai par :

  • PV (comme « petite variété ») les sous-variétés compactes, convexes, (connexes) de , de classe () et ( par morceaux) ou sans bord,

et

  • PV2 (comme « petite variété 2 ») les sous-variétés fermées, non bornées, convexes, (connexes) de , de classe () et ( par morceaux) ou sans bord,

et on posera :

;


et


  • La notion de "cardinal quantitatif" est la {vraie|véritable} notion de nombre ou de quantité d'éléments d'un ensemble, qui est une notion au moins définie et construite sur . C'est une mesure définie sur , qui ne néglige aucun point et pour laquelle le cardinal quantitatif ou le nombre d'éléments ou la quantité d'éléments ou la masse ou le poids d'un singleton vaut et qui s'exprime en fonction des mesures [extérieures] de Lebesgue généralisées ou de Hausdorff, de dimension , pour la distance euclidienne, sur . C'est une notion qui prolonge le caractère intuitif des propriétés que l'on a déjà de la notion de cardinal (de Cantor) dans le cas des ensembles finis, au cas des ensembles infinis (en tout cas, au moins au cas des ensembles infinis de ) c-à-d qui vérifie, en particulier, le principe du tout et de la partie : "Le tout est nécessairement strictement plus grand que chacune de ses sous-parties strictes". C'est une notion pour laquelle je cherche à aller plus loin (dans mes travaux relativement modestes, je suis allé jusqu'aux parties de et de , et aux mêmes parties en remplaçant "convexe" par "polyconvexe"). Par opposition à la notion de cardinal de Cantor c-à-d la notion usuelle de cardinal (1 et Autre lien 2), que j'appelle "cardinal potentiel", et qui est définie pour toutes les parties de et qui est la {vraie|véritable} notion de nombre ou de quantité d'éléments d'un ensemble, dans le cas des ensembles finis, mais qui est un ordre de grandeur du nombre ou de la quantité d'éléments d'un ensemble, dans le cas des ensembles infinis et qui ne vérifie pas le principe du tout et de la partie. Donc la notion de "cardinal quantitatif" se veut être une notion plus fine que celle de "cardinal potentiel" c-à-d que celle de cardinal (de Cantor). Les notions de cardinal quantitatif et de "cardinal potentiel" se confondent, dans le cas des parties finies.


(03-06-2021 : Rectification : La notion de cardinal quantitatif n'est pas a priori une mesure définie sur , car n'est pas a priori une tribu de parties. Toutefois, cette notion a été construite de manière à se comporter comme une mesure. 24-06-2021 : Cette notion est sûrement une mesure sur une tribu que nous devons déterminer. Pour le moment, nous ne cherchons pas à déterminer la tribu, la plus grande, sur laquelle elle serait une mesure, car nous aurons vraisemblablement besoin de la définition de cette notion sur une tribu intermédiaire, avant de pouvoir la généraliser davantage.)


(08-07-2023 : Remarque : Comme dans le cas classique de cardinal d'un ensemble, les termes "cardinal d'un ensemble" et "puissance d'un ensemble" se confondent et que l'équipotence de 2 ensembles désigne plutôt le fait que ces 2 ensembles ont même puissance, c-à-d le fait que ces 2 ensembles ont même cardinal, c-à-d le fait que ces 2 ensembles peuvent être mis en bijection, il est peut-être plus pertinent et plus approprié de renommer le "cardinal équipotentiel d'un ensemble" (c-à-d le "cardinal d'un ensemble"), "cardinal potentiel d'un ensemble" c-à-d le cardinal, au sens de la puissance, d'un ensemble, et ce, toujours, afin de le distinguer du "cardinal quantitatif d'un ensemble" c-à-d du cardinal, au sens de la quantité, d'un ensemble.)


(09-07-2023 : Remarque : Pour désigner le "cardinal, au sens de la puissance, d'un ensemble", je n'ai pas d'autre expression que "cardinal potentiel d'un ensemble", même si, ici, "potentiel" désigne "au sens de la puissance" et non "en puissance". Peut-être que pour l'usage que je veux en faire, il faudrait désigner le "cardinal, au sens de la puissance, d'un ensemble", "cardinal potentatif d'un ensemble" ou "cardinal potentiatif d'un ensemble", mais les termes "potentatif" et "potentiatif" sont des néologismes très rares.)


(20-09-2023 : Dans ce qui suit, j'ai remplacé l'expression "plafonnement normalisé/plafonnements normalisés" par l'expression "plafonnement normal/plafonnements normaux".)


Cette notion est définie sur . Le problème se pose, en dehors de , car je me suis permis quelques audaces avec les "plafonnements", dans un premier temps, "non bornés ou à l'infini", de parties non bornées de [Cf. définition dans mes travaux], notamment afin d'éviter les contradictions, quitte à faire certaines concessions. Mais finalement on peut définir le cardinal quantitatif, relatif à un repère orthonormé, d'une partie non bornée ou même bornée de , comme le cardinal quantitatif, relatif à ce même repère orthonormé, d'un des plafonnements normaux (bornés ou non bornés ou à l'infini) de cette partie non bornée ou même bornée de . Néanmoins malgré ces concessions qui, en fait, n'en sont pas, nous y gagnons très largement, par l'explosion des nombres et des quantités infinis, ainsi produite, bien plus forte et bien plus grande que celle du cardinal potentiel c-à-d que celle du cardinal (de Cantor). Peut-être que l'on pourra généraliser "ma" théorie, à toutes les parties bornées, voire à tous les "plafonnements bornés" de parties bornées de , voire à tous les "plafonnements non bornés ou à l'infini" de parties non bornées de , voire à toutes les parties non bornées de .


Si l'on veut inclure le cas des parties non bornées de c-à-d si l'on veut étendre cette notion à des classes de sous-ensembles non bornés de (sous réserve de compatibilité des axiomes de définition et de non-contradiction), on doit abandonner l'axiome de la -additivité, du moins si on utilise la notation classique concernant la définition classique de limite d'une suite de parties bornées de tendant vers une partie non bornée de , mais on peut le récupérer, d'une certaine façon, en utilisant une notation non classique concernant la définition non classique de limite d'une suite de parties bornées de tendant vers un plafonnement à l'infini d'une partie non bornée de , définition qui ne diffère de la définition classique que par un changement de notation près induisant aussi un changement de nature de l'objet "limite d'une suite de parties", et considérer que la notion de cardinal quantitatif, dans le cas des parties non bornées de n'est plus une notion universelle, mais une notion relative au repère orthonormé direct de , et au plafonnement sphérique ou autre, à l'infini, associé, que l'on s'est fixé.

Il est à noter qu'une partie non bornée de admet une infinité de plafonnements à l'infini.

On utilisera, essentiellement, dans la partie spéculative, une notion de limite de suites de parties de tendant chacune vers un plafonnement à l'infini d'une partie de .

Comme dit ci-dessus, il y a quelques concessions à faire pour inclure le cas des sous-ensembles non bornés de et ces considérations nécessitent un cadre neuf, où, par exemple, il faut appeler autrement la plupart des "droites" (resp. des "demi-droites"), puisque dans notre cadre, toutes les "droites" (resp. toutes les "demi-droites") n'ont pas toutes la même longueur, si on considère que l'on est dans un "plafonnement à l'infini" ou dans un autre, et ce du fait même de l'existence pour chaque partie non bornée de , d'une infinité de "plafonnements à l'infini", et du fait qu'en considérant un "plafonnement à l'infini" donné, certains points sont plus près que d'autres de ce "plafonnement".


Entre autre, j'essaie d'étendre et de généraliser cette notion aux parties de , voire à celles de [Cf. définitions dans mes travaux], quitte à tenter d'introduire et de définir le nouvel espace , qui me semble, vu de très loin, avoir des points communs avec l'espace de l'analyse non standard. Dans une section, j'ai essayé de définir des nombres , en utilisant une relation d'équivalence et une relation d'ordre totale, et une fois cette définition donnée, on peut alors définir l'ensemble par : .


NB : Je ne suis pas un de ces farfelus qui postent en pensant avoir résolu en quelque pages des conjectures célèbres qui résistent depuis longtemps : Le problème que je souhaite résoudre ou faire progresser est plus raisonnable et est moins connu, même s'il revient, ni plus ni moins, à faire "péter" de la quantité infinie, encore plus fou, plus fort et plus finement, que Cantor.


La notion de cardinal quantitatif (ou au sens de la quantité) est une notion qui existe, mais (trompeusement) sous d'autres appellations, et qui est bel et bien, et parfaitement définie de manière générale, dans la littérature, du moins, sur une classe de parties bornées de (Cf. interventions de Michel COSTE), mais qui y est très peu présente :

Il reste à la généraliser à des classes de parties, de plus en plus larges.


La notion de cardinal (de Cantor) est valable pour toutes les parties de , alors que concernant la notion de cardinal quantitatif, on ne sait pas, pour le moment, du moins concernant la partie connue et établie officiellement, aller au delà des parties de , mais il fallait le dire avant de dire qu'une telle généralisation était impossible, au delà des parties finies.


Voici cette notion présentée par Michel COSTE qui n'aime pas trop l'appellation "cardinal" : (voir supra)


(Historiquement, avant Cantor, la notion de "cardinal d'un ensemble" désignait la véritable notion de quantité d'éléments d'un ensemble. Depuis Cantor, cela n'est plus vrai, elle désigne la puissance d'un ensemble. Alors trouvant la notion véritable de quantité d'éléments d'un ensemble, plus fine que la notion de puissance d'un ensemble et prolongeant l'intuition que l'on en a déjà dans le cas des ensembles finis, c'est celle à qui on devrait et à qui on doit attribuer le qualificatif de "cardinal d'une ensemble". Mais comme ce mot était déjà utilisé mais maladroitement, j'ai dû inventer les terminologies "cardinal quantitatif d'un ensemble" et "cardinal potentiel d'un ensemble", pour les distinguer.

Attention : En adoptant cette terminologie, la notion de "cardinal quantitatif" n'est pas un cas particulier de la notion de "cardinal".

Mais sinon si on tient vraiment à attribuer le nom de "cardinal" uniquement à la notion de puissance qui est un ordre de grandeur de la quantité d'éléments d'un ensemble dans le cas des ensembles infinis, on peut, sans adopter la terminologie précédente, appeler, tout simplement, la notion véritable de quantité d'éléments d'un ensemble : "quantité d'éléments d'un ensemble".)


Je pense que les notions de quantité d'éléments et de puissance doivent être distinguées :

Car, par exemple, on a bien et peut être mis en bijection avec

et on a et

alors qu'on a ,


désigne le cardinal quantitatif de l'ensemble , sous certaines conditions sur l'ensemble

et désigne le cardinal potentiel de l'ensemble , c-à-d le cardinal de Cantor ou le cardinal classique de l'ensemble , .


La notion de cardinal quantitatif (ou au sens de la quantité) présentée par Michel COSTE concerne la classe de parties de , .


Je pense qu'on peut, en fait, comparer, entre eux, les cardinaux quantitatifs des parties de ayant une décomposition, en un nombre fini de sous-variétés compactes, convexes, (connexes), simplement connexes de , de classe , et de dimension , pour tout , ainsi qu'en un nombre fini, en plus ou en moins, de singletons, ou ayant une décomposition, en un nombre fini de sous-variétés ouvertes bornées, convexes, (connexes), simplement connexes de , de classe , et de dimension , pour tout , ainsi qu'en un nombre fini, en plus ou en moins, de singletons.


[Et en m'hasardant, mais c'est relativement lourd et pas simple à formuler :


Je pense, même, qu'on peut, en fait, comparer, entre eux, les cardinaux quantitatifs des parties de

ayant une décomposition, en un nombre fini de réunions disjointes de sous-variétés compactes, convexes, (connexes), simplement connexes de , de classe , et de dimension , , pour tout , ainsi qu'en un nombre fini, en moins, de réunions disjointes de sous-variétés compactes, convexes, (connexes), simplement connexes de , de classe , et de dimension , telle que , pour tout et pour tout ,

ou ayant une décomposition, en un nombre fini de réunions disjointes de sous-variétés ouvertes bornées, convexes, (connexes), simplement connexes de , de classe , et de dimension , , pour tout , et en un nombre fini de singletons dont la réunion forme l'ensemble (pouvant être vide), ainsi qu'en un nombre fini, en moins, de réunions disjointes de sous-variétés ouvertes bornées, convexes, (connexes), simplement connexes de , de classe , et de dimension , telle que , pour tout et pour tout , et en un nombre fini, en moins, de singletons non inclus dans , dont la réunion forme l'ensemble (pouvant être vide),


c-à-d qu'on peut comparer, entre eux, les cardinaux quantitatifs des parties

telles que :

réunion disjointe de sous-variétés compactes, convexes, (connexes), simplement connexes de , de classe , et de dimension ,

réunion disjointe de sous-variétés compactes, convexes, (connexes), simplement connexes de , de classe , et de dimension , telle que ,

.

ou telles que :

réunion disjointe de sous-variétés ouvertes bornées, convexes, (connexes), simplement connexes de , de classe , et de dimension ,

réunion disjointe de sous-variétés ouvertes bornées, convexs, (connexes), simplement connexes de , de classe , et de dimension , telle que ,

, réunion de singletons (pouvant être vide),

, réunion de singletons (pouvant être vide),

.]


Décomposition d'une partie bornée de (voir infra)


Remarque : J'ai dit plus haut qu'on savait comparer, entre eux, les cardinaux quantitatifs (ou au sens de la quantité), des parties bornées de , ayant une décomposition, en un nombre fini de sous-variétés, comme détaillée ci-dessus (en particulier en un nombre fini de variétés, compactes, convexes, connexes, simplement connexes) :

Mais je pense qu'en fait, il doit être possible de comparer, entre eux, ceux des parties bornées quelconques et même ceux de parties non bornées quelconques de (respectivement de ), ayant une décomposition analogue voire peut-être ayant une décomposition analogue en remplaçant « fini » par « au plus dénombrable », et peut-être même en supprimant toutes les expressions : "simplement connexes".

En effet, une fois qu'on s'est occupé de l'adhérence ou de l'intérieur d'une partie, on s'occupe ensuite de l'adhérence sans la partie ou de la partie sans l'intérieur, et on refait la même chose, avec ces dernières.


Les mesures [extérieures] de Lebesgue généralisées ou de Hausdorff, de dimension , pour la distance euclidienne, sur ,


(Le cas étant un cas à part que je compte voir figurer, mais qui n'est pas présent dans le document "Théorie de la mesure/Cf. Mesures de Hausdorff"

https://www.fichier-pdf.fr/2021/08/07/polyintegrationmai2013/

Cf. page 13 : Chapitre 1. Les mesures/III Exemples fondamentaux d'espaces mesures/Mesures de Hausdorff

Cf. page 39 : Chapitre 4. La mesure de Lebesgue et ses corollaires/II Généralisations de la mesure de Lebesgue/II.1 Mesures de Hausdorff/Définition 5

Cf. page 40 : Chapitre 4. La mesure de Lebesgue et ses corollaires/II Généralisations de la mesure de Lebesgue/II.3 Définition alternative de la mesure de Lebesgue/Théorème 3

Cf. page 41 : Chapitre 4. La mesure de Lebesgue et ses corollaires/II Généralisations de la mesure de Lebesgue/II.4 Longueur, aire, surface de parties courbées de /Définition 7

Cf. page 67 : Chapitre 7. Théorème du changement de variable/I Cas des applications linéaires

Cf. page 68 : Chapitre 7. Théorème du changement de variable/II Mesure des sous-variétés plongées

Cf. page 70 : Chapitre 7. Théorème du changement de variable/III Intégration sur les sous-variétés plongées

Cf. aussi https://homeweb.unifr.ch/manolesc/Pub/teaching/Mesure_integration.pdf

Cf. aussi https://w3.ens-rennes.fr/math/people/thibaut.deheuvels/Mesures-Hausdorff.pdf),


sont telles que si , elles négligent chacune, respectivement, des points isolés, respectivement, des points isolés et des points de courbes, respectivement, des points isolés et des points de courbes et des points de surfaces, respectivement, des points isolés et des points de courbes et des points de surfaces et des points d'espaces de dimension , …, respectivement, des points isolés et des points de courbes et des points de surfaces et des points d'espaces de dimension , …, et des points d'espaces de dimension .


La "mesure" cardinal quantitatif qui ne veut négliger aucun point se doit de composer avec toutes les "mesures" [extérieures] de Lebesgue généralisées ou de Hausdorff, de dimension , pour la distance euclidienne, sur , , la mesure de comptage pouvant être considérée comme la "mesure" [extérieure] de Lebesgue généralisée ou de Hausdorff, de dimension , pour la distance euclidienne, .

(24-06-2021 : Rectification : La notion de cardinal quantitatif n'est pas a priori une mesure définie sur , car n'est pas a priori une tribu de parties.)


Les suites d'inégalités données, juste après, dans la suite, ne sont pas si techniques que ça et sont là pour illustrer mon propos et pour que l'on voit quelles sont les différences fondamentales entre le cardinal potentiel "" ou "" qui est la notion usuelle de cardinal et qui est en rapport direct avec la notion de bijection, et le cardinal quantitatif, relatif au repère orthonormé de , "", sachant que la référence à un repère orthonormé , n'est utile que pour les parties non bornées de (ou de , de manière générale), et que dans le cas des parties bornées de (ou de , de manière générale), on peut noter le cardinal quantitatif : "".


Soit un repère orthonormé de , d'origine .


Nous désignons le cardinal quantitatif d'une partie de par et son cardinal potentiel" par .


On a :



alors que :



Applications :


1) Imaginons 2 disques durs cubiques compacts dont l'un est plus gros que l'autre et pour lesquels on peut stocker une donnée en chaque point, alors le plus gros disque dur cubique aura une plus grande capacité de stockage que l'autre disque (quantité), et non pas une capacité égale à celle de l'autre disque (puissance).

2) Dans une bouteille de , on stocke plus de matière continue que dans une bouteille d'.

Je viens de donner la raison d'être et l'utilité de la notion de cardinal au sens de la quantité.

On ne fait pas toujours des mathématiques, en vue d'applications pratiques ou concrètes.

Pourtant à qui lui veut des applications :

La notion de quantité de matière discrète ou de matière continue, parle d'elle-même.

Supposons qu'un univers soit fait d'un mélange de matière continue et de matière discrète :

Le cardinal quantitatif (ou au sens de la quantité) mesure la quantité de matière continue et de matière discrète.

La notion de matière continue n'existe certes pas dans notre univers, mais on peut la concevoir mathématiquement et c'est une bonne approximation de la matière discrète, à l'échelle macroscopique, en physique.

La notion de quantité est plus fine que celle de puissance qui donne, seulement, un ordre de grandeur de la première.


[Rectification : En fait, tout dépend des "plafonnements bornés" de chacun des 2 disques durs cubiques compacts et plus généralement des "plafonnements bornés" des parties infinies bornées que l'on s'est fixé c-à-d des densités (quantitatives) uniformes ou pas, que l'on s'est fixé, des "matières continues et/ou discrètes" qui les composent et qui sont composées chacune au moins d'une infinité de points de "matière continue" ou de "matière discrète" (Tout point étant de dimension nulle, les interprétations concernant les densités quantitatives des parties infinies bornées sont multiples voire infinies et donc aussi concernant leurs cardinaux quantitatifs relativement aux plafonnements bornés et selon les plafonnements bornés que l'on s'est fixé). Remarque : Cela marche aussi avec les "plafonnements à l'infini" des parties (infinies) non bornées. Il existe, néanmoins, pour chaque partie bornée, un ou des plafonnement(s) borné(s), et pour chaque partie non bornée, un ou des plafonnement(s) à l'infini, dits normaux.]


Il reste un certain nombre de généralisations permettant de comparer les cardinaux quantitatifs (ou au sens de la quantité), de n'importe quelle partie, entre eux : Tout l'intérêt et tout l'enjeu de cette définition, est là.

Restera à généraliser cette notion aux parties de , , etc..., et à des classes de parties, les plus larges possibles, où on peut encore lui donner un sens, même affaibli.


La notion de "volume" ou de "mesure" [extérieure] de Lebesgue généralisée ou de Hausdorff, de dimension , pour la distance euclidienne, sur , le fait que soit un espace métrique et un espace vectoriel (topologique) normé, le fait que soit totalement ordonné, semblent essentiels, pour définir la notion de cardinal, au sens de la quantité sur  :

Comment généraliser ces notions ou trouver des notions affaiblies qui marchent, aussi, dans d'autres espaces, par exemple sur des espaces qui dépendent de  ?

Ce que sont ces travaux, ce qu'ils ne sont pas et ce qu'on est en droit d'attendre d'eux Modifier

Le PDF : "La saga du "cardinal"" (version 4) de Michel COSTE guide le lecteur en expliquant intuitivement les notions et les idées qu'il présente ainsi que tout le cheminement qui a permis d'y aboutir à travers des exemples.

Le but de mes travaux n'est pas, mise à part l'introduction, de reproduire et d'inclure ou d'incorporer tout le travail d'explication, d'explicitation, de vulgarisation et de pédagogie effectué par Michel COSTE ainsi que toute la prise par la main du lecteur par ce dernier, mais d'enchaîner rigoureusement les définitions, propositions, résultats et exemples comme cela est le cas dans de nombreux livres de mathématiques, même si ceux-ci sont censés donner une certaine idée et une certaine intuition des objets manipulés.

Il faut peut-être que je travaille encore l'énoncé d'un des théorèmes de mes travaux et que je le distingue bien de sa démonstration.

Depuis quelques temps, j'ai fait un travail censé éclaircir et désambiguïser les axiomes de définition du cardinal quantitatif en précisant rigoureusement pour chacun leurs domaines d'applications respectifs, certains domaines étant plus généraux que d'autres, mais au final on a tous les axiomes de définition dont on a besoin sur le domaine .

Mes travaux n'ont pas par exemple pour but comme Michel COSTE l'a fait à partir du théorème de Steiner-Minkowski, d'expliquer géométriquement la nature des coefficients qui interviennent dans la formule du cardinal quantitatif sur .


L'essentiel de la partie connue et établie a été proposée et a bien été validée par Michel COSTE.

Mais, peut-être que je dois encore intervenir dans son contenu et dans sa forme, pour la mettre dans une forme qui satisfasse les intervenants Des-mathematiques.net, en m'inspirant du PDF de Michel COSTE.

Mais, je n'aurais pas pu faire, de moi-même, la vulgarisation qu'a faite Michel COSTE dans son PDF, car je ne disposais pas de tous les éléments et de toutes les connaissances pour le faire, et, pour les mêmes raisons, j'ai des limites à pouvoir faire mieux que lui et à compléter son travail, concernant la partie connue et établie.

Il est vrai que mes travaux sur le Cardinal quantitatif sont beaucoup plus secs que le PDF de Michel COSTE, "La saga du "cardinal"" : Je ne dis pas que tout ce qu'a dit dedans Michel COSTE est inutile et n'aide pas à la compréhension, mais si on veut démontrer ou utiliser de manière opérationnelle les résultats qui y sont mentionnés, on n'a pas besoin de tous les commentaires qu'il y a faits.

Par ailleurs, lorsque j'ai posté mes travaux sur le Cardinal quantitatif et autres sur Les-mathematiques.net (Je viens de faire supprimer un certain nombre de pages, il reste encore la version 3 du PDF de Michel COSTE), je me suis quasiment comporté comme s'il s'agissait d'une page de brouillon, d'où le déchaînement et la déferlante de critiques, d'interprétations, de malentendus et de conclusions parfois et même souvent faux, erronés, hâtifs, malvenus ou infondés qu'ils ont pu susciter y compris sur ma propre personne et mes propres compétences et capacités en mathématiques, même si par ailleurs une partie était parfaitement justifiée.

D'une manière générale, lorsque je me suis lancé dans des travaux peu académiques et non balisés, j'ai vraiment eu de bonnes intuitions.

Mais lorsqu'il s'agit de les exprimer, de les préciser et de les affiner, je suis susceptible d'écrire plein d'âneries et de conneries, pendant une longue période voire une très longue période, même lorsque je dispose des connaissances pour les éviter, conneries qui se résorbent et se résorberont peu à peu, jusqu'à finir et/ou jusqu'à peut-être finir par faire aboutir mes intuitions initiales.

Cette façon de faire et de procéder ne passe pas inaperçue et ne passe malheureusement pas et visiblement pas sur Les-mathematiques.net et sur Maths-Forum, et y faisait désordre.

Certaines de mes discussions hors cardinal quantitatif et certains délires et divagations auraient dû être évités et auraient dû rester de l'ordre du brouillon personnel.

La situation de mes travaux sur Les-mathematiques.net est, de toute façon, devenue pourrie et irrécupérable, quels que soient les éventuels avancements ou progrès que j'aurais faits ou que je ferai à l'avenir.


Reste la partie spéculative.

Si l'ensemble est mal défini et qu'il n'y a aucune alternative possible pour le définir, alors une sous-section entière de la partie spéculative tombera à l'eau, mais pas tout.

J'ai de bonnes raisons de croire que la sous-section restante de la partie spéculative est valable et bonne dans le fond, et qu'il y a juste à intervenir encore dans son contenu et dans sa forme, pourvu que la définition de limite d'une famille de parties de tendant vers un plafonnement à l'infini d'une partie non bornée de soit valide et que ou bien la conjecture ou bien l'axiome que j'ai émis soit valable.

Liens Modifier

N'oubliez pas de consulter : https://www.philo-et-societe-2-0.com/


REMARQUE : On pourra d'abord lire les PDF de Michel COSTE, qui sont des articles informels de vulgarisation, beaucoup moins ambitieux :

Principale discussion où est intervenu Michel COSTE sur Les-mathematiques.net à propos de mes travaux en 2007 :

Remarque : Lorsque j'ai créé cette discussion, j'avais mis un PDF de mes travaux, en pièce-jointe (qui n'est plus accessible, mais dont je possède toujours un exemplaire que je préfère ne pas redonner et dont on peut se passer puisque l'essentiel de ses résultats valables a été donné par Michel COSTE, dans la discussion), où j'ai commis pas mal d'écueils car je ne possédais pas le formalisme et les notations nécessaires pour définir et désigner le bord, l'adhérence et l'intérieur d'une variété topologique quelconque de dimension de , sauf dans le cas où , et ces écueils figurent aussi dans certains messages de cette discussion. Par ailleurs, dans cette dernière, en particulier, j'avais inventé ma propre terminologie, à propos des parties "ouvertes pures", des parties "fermées pures" et des parties "à la fois ouvertes et fermées", alors que je voulais, en fait, simplement, désigner des parties "ouvertes", des parties "fermées" et des parties "ni ouvertes, ni fermées" et alors que je possédais la terminologie en usage, inconsciemment. De plus, j'avais un mal fou à définir la décomposition donnée dans "Partie déjà établie et connue : Cardinal quantitatif défini sur , pour /Exemples illustratifs de calculs, avec le cardinal quantitatif/Décomposition de certaines parties bornées de , pour ".

Panneau d’avertissement Les scans de pages de livres constituent une violation du copyright.

Voici des extraits du livre de Berger2 intitulé "Cedic-Nathan (vol 3): Convexes et polytopes, polyèdres réguliers, aires et volumes" :

Cf. Référence:Géométrie (Berger)

Quant à l'extrait de livre suivant, d'après Michel COSTE, il provient de Jean Dieudonné :


Voici des liens Wikipedia :

Voici des liens intéressants en français :


Voici un lien intéressant en anglais (du moins le début, en ce qui me concerne) :


La notion de cardinal quantitatif sur est une notion relative au repère orthonormé dans lequel on se place.


Voici des liens dont il faut vraiment éviter de consulter les pages concernées :

En mai 2021, sous un compte "MPF" créé à cet effet, j'avais demandé à Lostounet, l'un des administrateurs du forum Maths-Forum, de supprimer, en lui listant les liens url, les discussions que j'avais initiées et créées, il y a 4-5 ans, relatives au cardinal quantitatif, car elles font de l'ombre à la version actualisée de mes travaux sur la Wikiversité.

Or celui-ci n'a pas exécuté ma demande et a préféré, à la place et sans que je lui ai demandé, supprimer mon compte "Matheux philosophe" avec tous ses messages et m'a banni après, seulement, 3 messages, sous mon compte "MPF".

NB : J'avais déjà été banni sous mon pseudo "Matheux philosophe" à cause de ces discussions et du fait que j'avais signalé que Les-mathematiques.net m'avaient déjà banni pour des discussions antérieures sur le même thème.

Cf. aussi Utilisateur:Guillaume FOUCART/Passages que l'on peut omettre/A propos de ma demande de suppression de discussions sur le forum Maths-Forum

Voici les liens de ces discussions :

Il devient inutile de consulter les pages des liens suivants (j'ai pris en compte autant que ce peut des conseils et des remarques qui m'ont été donnés, mais, pas nécessairement, à chaud, aux moments mêmes où ils m'ont été donnés) :

sauf concernant 2 messages : 1 et 2

Voici un message d'une discussion sur Les-mathematiques.net, où je réponds à certaines critiques :

Voici un message sur le forum Futura-Sciences où l'intervenant Médiat a eu tort en disant qu'en qualifiant ma notion de "cardinal quantitatif", cela sous-entendait que je qualifiais la notion de cardinal classique (ou de Cantor) de "cardinal qualitatif". Or il n'en est rien, puisque si j'ai qualifié ma notion de "cardinal quantitatif", c'est en effet pour l'opposer au cardinal classique (ou de Cantor), mais en qualifiant ce dernier de "cardinal potentiel", tout en sachant que le cardinal quantitatif est la {vraie|véritable} notion de quantité d'éléments d'un ensemble alors que le cardinal classique (ou de Cantor) n'est en fait qu'un ordre de grandeur de la quantité d'éléments concernant les ensembles infinis :

Utilisateur:Guillaume FOUCART/Passages que l'on peut omettre/Commentaires, impressions voire spéculations autour des amateurs, des shtameurs, de moi-même, des intervenants et des grands intervenants sur les forums de mathématiques

Remarques secondaires Modifier

NB : Michel COSTE, qui tient à sa réputation, est uniquement responsable de ses propres propos dans les PDF dont il est l'auteur c'est-à-dire, ici, dans les documents intitulés "La saga du "cardinal"" versions 1-2-3-4, qui sont des articles informels de vulgarisation.

Avant d'envisager la formule du cardinal quantitatif concernant les parties bornées de , il faut d'abord l'envisager concernant les parties bornées de , et même seulement les PV.

NB : le principal et le plus dur reste encore à faire.

On pourra peut-être ensuite l'étendre à des classes de parties de .

Je sais que si des suites de polytopes de , de dimension (c'est-à-dire des suites de polyèdres compacts, convexes, [connexes] de , de dimension ), convergent vers une PV de dimension , alors les suites constituées des cardinal quantitatif des polytopes de chacune d'entre elles, convergent vers le cardinal quantitatif de cette PV.

(Cf. articles informels de vulgarisation de Michel COSTE que j'ai donnés (voir supra)

Le début des versions 1, 2 et 3, contient un passage que l'auteur a préféré supprimer dans la version 4, mais ce passage est fondamental pour moi, et est caractéristique et constitutif de la {vraie|véritable} notion de quantité d'éléments d'un ensemble, et qui dit que cette notion, appliquée à un ensemble, ne néglige aucun point, et que le cardinal quantitatif de tout singleton de vaut .)

La documentation disponible tourne autour de la géométrie convexe et de la formule de Steiner-Minkowski qui est fausse dans le cas des parties non convexes, mais cela est insuffisant voire inutile, si on veut aller au-delà des parties convexes.

Je sais que tout polyèdre non convexe est décomposable en polyèdres convexes. Il y a donc peut-être là une possibilité d'étendre la notion de cardinal quantitatif en supprimant la contrainte de convexité de ma définition des PV.


Conjecture :

"Toute partie non convexe, connexe, de est (une) réunion disjointe de parties convexes, (connexes), de ,

donc toute partie non convexe, de est (une) réunion disjointe de parties convexes, (connexes), de ,

donc toute partie de est (une) réunion disjointe de parties convexes, (connexes), de ."


Il est mentionné quelque part que la formule de Steiner-Minkowski s'étend aux polyconvexes, et que donc ma notion s'étend, aussi, à ces derniers.

Michel COSTE et Denis FELDMANN disent pour l'un qu'ils ne peuvent raisonnablement pas aller au-delà des PV, et pour l'autre au-delà des parties bornées de , mais, à aucun moment, ils ne disent pourquoi. Mais, en fait, ils disent cela, parce qu'ils n'ont pas vu qu'on pouvait aller plus loin et dépasser les contradictions, en définissant et en introduisant les "plafonnements à l'infini".

Michel COSTE a vu et a fait le lien et le rapprochement entre le cardinal quantitatif et la formule de Steiner-Minkowski, mais tous les travaux qui tournent autour de cette formule concernent principalement, le théorème de Hadwiger, les inégalités isopérimétriques, l'inégalité de Brunn-Minkowski et la formule de Pick et ignorent complètement, mais peut-être pas, totalement, pour le 1er, la notion que je cherche à étendre.


Par ailleurs, j'ai introduit des notions qui sont peut-être inutiles pour étendre le cardinal quantitatif aux "seules" parties de .

De plus, il se peut qu'elles aient été déjà inventées par d'autres personnes, avant moi, mais dans tous les cas, on devrait, normalement, leur trouver une utilité.


Sur le forum Maths-Forum, Ben314 préfère abandonner l'axiome du "principe du tout et de la partie" (cf. supra), que d'abandonner l'axiome ou la proposition :"Toute translation laisse toute partie infinie, invariante" : C'est une conception légitime de la notion d'infini. Quant à moi, je pars de la conception inverse, c'est un choix, tout aussi légitime. Il existe différentes conceptions de la notion d'infini, légitimes, mais incompatibles entre elles.

Pour le moment, je sais comparer les cardinal quantitatif, au moins, des PV de , de dimension , et je crois savoir comparer ceux, au moins, des PV de , de dimension .

Partie déjà établie et connue : Cardinal quantitatif défini sur , pour [en fait, à un changement de notion de limite de famille de parties de , près, cette partie correspond au cas du cardinal quantitatif des plafonnements bornés normaux des parties appartenant à une certaine classe de parties bornées de ] Modifier

Préliminaires Modifier

Définition de , pour Modifier

Début d’un théorème
Fin du théorème


Construction et définition Modifier

Définition du cardinal quantitatif sur (axiomes de définition généraux dans le cas des parties de + axiomes de définition généraux dans le cas des parties de et en particulier dans le cas des parties de ), pour Modifier

Début d’un théorème
Fin du théorème


Remarques sur la définition Modifier

Remarque :

On verra que est définie et donnée sur , par une formule exprimant en fonction de la suite finie de mesures de Lebesgue généralisées ou de Hausdorff, pour la distance euclidienne, de dimension , sur (si on considère , comme la mesure de comptage définie sur la tribu des parties au plus dénombrables de ), et cette formule est donnée par Michel Coste,

dans La saga du "cardinal" version 4 (voir supra)

ou dans : Théorème (, et formule donnant le cardinal quantitatif de , pour (et, en particulier, de ), en fonction du cardinal quantitatif de l'intervalle )

ou dans les propositions suivantes : Proposition 1.4 de GF (Guillaume FOUCART), dans les PDF de Michel COSTE (voir infra) et Proposition (voir infra)


Le problème de cette définition est que l'ensemble d'arrivée dépend de .

Quant à l'introduction de l'anneau commutatif unitaire intègre ordonné , c'est faute de mieux pouvoir définir l'ensemble d'arrivée de l'application , mais j'aurais pu l'appeler , et il doit, normalement, pouvoir être construit et défini, à partir des axiomes de définition de et de . Mais, à défaut, on peut considérer, dans un premier temps, que l'ensemble d'arrivée de l'application est l'ensemble , où .


Remarque importante : Obstacle et facteur, pour l'instant, limitant de "ma théorie":

Dans le cas des parties de , Michel Coste a dit qu'on ne pouvait pas aller plus loin, avec la théorie du cardinal quantitatif, mais moi je crois qu'on peut construire , même si ce ne sera pas forcément une mesure au sens usuel, sur , mais que ce le sera, d'une certaine façon, en introduisant la nouvelle notation et la nouvelle notion de "plafonnement à l'infini" et .


Remarque importante : Lorsqu'on parle d'une partie non bornée (cas traité dans la partie spéculative de mes travaux) dans un espace qui est un plafonnement à l'infini (notion définie dans la partie spéculative de mes travaux),

au lieu de parler du cardinal quantitatif relatif au repère , de la partie , "", on devrait plutôt parler du cardinal quantitatif relatif au repère et au plafonnement à l'infini , de la partie , "",

et dans ce cas on a : "".

Quand on parle de "", il se peut que la mention du repère soit inutile et superflue.

Lorsque la famille est une famille de parties de , bornées ou du moins convexes (connexes), bornées, de classe () et ( par morceaux), alors quand on parle de "", il se peut que la mention du repère soit inutile et superflue.


Problème important (lignes ajoutées le 29/05/2021) : n'est manifestement pas une tribu de parties et concernant la notion de cardinal quantitatif, il n'y a donc pas lieu de parler de mesure définie sur .

Le fait de remplacer le terme "convexe" par celui de "polyconvexe" (et donc le terme "connexe" par le terme "non connexe" ou rien du tout), dans la définition de ne change rien à l'affaire : La stabilité par passage par intersection dénombrable semble a priori vérifiée (mais je n'en suis pas sûr), mais la stabilité par passage au complémentaire de la nouvelle classe de parties ainsi obtenue n'est toujours pas vérifiée. Peut-être que pour créer la tribu adéquate que l'on souhaite, il faut ajouter aux parties de (ou de la classe de parties de obtenue en remplaçant le terme "convexe" par le terme "polyconvexe" dans la définition de ), leurs complémentaires (dans ). Mais, alors il faut parler du cardinal quantitatif de ou plus précisément du cardinal quantitatif, relativement à un repère orthonormé, d'un des plafonnements à l'infini qui est une notion que nous n'avons pas encore définie.

Propriétés immédiates découlant des axiomes de définition du cardinal quantitatif sur , et , pour Modifier

Début d’un théorème
Fin du théorème


Existence et résultats sur les intervalles , bornés, de , et en particulier, sur les parties de Modifier

Soit un repère orthonormé de , d'origine .

Préliminaires :

Notations Modifier

Début d’un théorème
Fin du théorème


Remarque Modifier

Début d’un théorème
Fin du théorème


Proposition (Proposition 1.4 de GF, dans les PDF de Michel COSTE [version du 11 novembre 2007]) Modifier

Début d’un théorème
Fin du théorème


Démonstration :


Si on suppose que et sont bornés dans , sans s'assimiler à des "demi-droites" de , alors :


On pose :

,