Trigonométrie/Les formules de trigonométrie

Début de la boite de navigation du chapitre

Cette annexe va présenter une démonstration des formules de trigonométrie du chapitre 7 (page qu'il serait très pratique d’avoir dans un autre onglet de votre navigateur en parallèle de ce cours). Il existe des démonstrations ne relevant que de géométrie pure mais dans le but de généraliser les formules aux angles orientés et à valeur réelle (angles négatifs, angles supérieurs à 360°), nous allons devoir recourir à la géométrie analytique.

Les formules de trigonométrie
Icône de la faculté
Chapitre no 11
Leçon : Trigonométrie
Chap. préc. :Équations et inéquations trigonométriques
Chap. suiv. :Sommaire
fin de la boite de navigation du chapitre
En raison de limitations techniques, la typographie souhaitable du titre, « Trigonométrie : Les formules de trigonométrie
Trigonométrie/Les formules de trigonométrie
 », n'a pu être restituée correctement ci-dessus.

Notre priorité sera, avant tout, de montrer les deux formules concernant et . Toutes les autres en découleront immédiatement.

Les formules d'addition

modifier
 
Somme de deux angles dans le cercle trigonométrique.

Soient   et   deux réels. Dans un repère orthonormé  , posons   et   les points du cercle trigonométrique tels que

  et  .

Soit encore   le point du cercle trigonométrique tel que

 .

Alors :

 

Mais dans le repère  ,

 

Or  .

Les composantes d’un vecteur étant uniques, nous pouvons identifier :

 

Enfin,

 

Les autres formules

modifier

En posant  , et en n'oubliant pas que  , (en divisant les deux membres par  ) :  , les formules de duplication viennent clairement.

De là, on trouve facilement les formules de linéarisation à l'aide de deux expressions de  .

Les formulaires 4 et 5 s'obtiennent à partir du formulaire 1 :

 

donc

 

et, par un changement de variable, en posant   et  ,

 

La formule   se déduit directement de la formule d'addition pour  .