∫
1
2
2
x
−
1
(
x
+
1
)
4
x
+
5
−
x
2
d
x
=
∫
1
2
2
x
−
1
(
x
+
1
)
9
−
(
x
−
2
)
2
d
x
=
∫
1
2
2
x
−
1
3
(
x
+
1
)
1
−
(
x
−
2
3
)
2
d
x
.
{\displaystyle {\begin{aligned}\int _{\frac {1}{2}}^{2}{\frac {x-1}{(x+1){\sqrt {4x+5-x^{2}}}}}\,\mathrm {d} x&=\int _{\frac {1}{2}}^{2}{\frac {x-1}{(x+1){\sqrt {9-(x-2)^{2}}}}}\,\mathrm {d} x\\&=\int _{\frac {1}{2}}^{2}{\frac {x-1}{3(x+1){\sqrt {1-\left({\frac {x-2}{3}}\right)^{2}}}}}\,\mathrm {d} x.\end{aligned}}}
On pose alors :
sin
u
=
x
−
2
3
⇔
x
=
3
sin
u
+
2
d
x
=
3
cos
u
d
u
{\displaystyle \sin u={\frac {x-2}{3}}\Leftrightarrow x=3\sin u+2\qquad \mathrm {d} x=3\cos u\,\mathrm {d} u}
.De plus, quand
x
{\displaystyle x}
varie de
1
2
{\displaystyle {\frac {1}{2}}}
à
2
{\displaystyle 2}
,
sin
u
{\displaystyle \sin u}
varie de
−
1
2
{\displaystyle -{\frac {1}{2}}}
à
0
{\displaystyle 0}
donc on peut faire varier
u
{\displaystyle u}
de
−
π
6
{\displaystyle -{\frac {\pi }{6}}}
à
0
{\displaystyle 0}
.
On a donc :
∫
1
2
2
x
−
1
(
x
+
1
)
4
x
+
5
−
x
2
d
x
=
∫
1
2
2
x
−
1
3
(
x
+
1
)
1
−
(
x
−
2
3
)
2
d
x
=
∫
−
π
6
0
3
sin
u
+
2
−
1
3
(
3
sin
u
+
2
+
1
)
1
−
sin
2
u
3
cos
u
d
u
=
∫
−
π
6
0
1
+
3
sin
u
3
(
3
+
3
sin
u
)
cos
u
3
cos
u
d
u
=
1
3
∫
−
π
6
0
1
+
3
sin
u
1
+
sin
u
d
u
.
{\displaystyle {\begin{aligned}\int _{\frac {1}{2}}^{2}{\frac {x-1}{(x+1){\sqrt {4x+5-x^{2}}}}}\,\mathrm {d} x&=\int _{\frac {1}{2}}^{2}{\frac {x-1}{3(x+1){\sqrt {1-\left({\frac {x-2}{3}}\right)^{2}}}}}\,\mathrm {d} x\\&=\int _{-{\frac {\pi }{6}}}^{0}{\frac {3\sin u+2-1}{3(3\sin u+2+1){\sqrt {1-\sin ^{2}u}}}}3\cos u\,\mathrm {d} u\\&=\int _{-{\frac {\pi }{6}}}^{0}{\frac {1+3\sin u}{3(3+3\sin u)\cos u}}3\cos u\,\mathrm {d} u\\&={\frac {1}{3}}\int _{-{\frac {\pi }{6}}}^{0}{\frac {1+3\sin u}{1+\sin u}}\,\mathrm {d} u.\end{aligned}}}
Aucune des règles de Bioche ne s’applique ici. Par conséquent, on pose :
y
=
tan
u
2
{\displaystyle y=\tan {\frac {u}{2}}}
,ce qui entraîne :
sin
u
=
2
y
1
+
y
2
,
d
u
=
2
d
y
1
+
y
2
{\displaystyle \sin u={\frac {2y}{1+y^{2}}},\qquad \mathrm {d} u={\frac {2\,\mathrm {d} y}{1+y^{2}}}}
.On a donc :
∫
1
2
2
x
−
1
(
x
+
1
)
4
x
+
5
−
x
2
d
x
=
1
3
∫
−
π
6
0
1
+
3
sin
u
1
+
sin
u
d
u
=
1
3
∫
−
tan
π
12
0
3
2
y
1
+
y
2
+
1
2
y
1
+
y
2
+
1
2
d
y
1
+
y
2
=
2
3
∫
3
−
2
0
6
y
+
1
+
y
2
(
2
y
+
1
+
y
2
)
(
1
+
y
2
)
d
y
=
2
3
∫
3
−
2
0
y
2
+
6
y
+
1
(
y
+
1
)
2
(
y
2
+
1
)
d
y
,
{\displaystyle {\begin{aligned}\int _{\frac {1}{2}}^{2}{\frac {x-1}{(x+1){\sqrt {4x+5-x^{2}}}}}\,\mathrm {d} x&={\frac {1}{3}}\int _{-{\frac {\pi }{6}}}^{0}{\frac {1+3\sin u}{1+\sin u}}\,\mathrm {d} u\\&={\frac {1}{3}}\int _{-\tan {\frac {\pi }{12}}}^{0}{\frac {3{\frac {2y}{1+y^{2}}}+1}{{\frac {2y}{1+y^{2}}}+1}}\,{\frac {2\,\mathrm {d} y}{1+y^{2}}}\\&={\frac {2}{3}}\int _{{\sqrt {3}}-2}^{0}{\frac {6y+1+y^{2}}{(2y+1+y^{2})(1+y^{2})}}\,\mathrm {d} y\\&={\frac {2}{3}}\int _{{\sqrt {3}}-2}^{0}{\frac {y^{2}+6y+1}{(y+1)^{2}(y^{2}+1)}}\,\mathrm {d} y,\end{aligned}}}
qui se décompose en éléments simples sous la forme :
∫
1
2
2
x
−
1
(
x
+
1
)
4
x
+
5
−
x
2
d
x
=
2
∫
3
−
2
0
1
y
2
+
1
d
y
+
4
3
∫
3
−
2
0
−
1
(
y
+
1
)
2
d
y
=
2
[
arctan
y
]
3
−
2
0
+
4
3
[
1
y
+
1
]
3
−
2
0
=
2
×
π
12
+
4
3
(
1
−
1
3
−
1
)
=
π
6
+
2
3
−
2
3
.
{\displaystyle {\begin{aligned}\int _{\frac {1}{2}}^{2}{\frac {x-1}{(x+1){\sqrt {4x+5-x^{2}}}}}\,\mathrm {d} x&=2\int _{{\sqrt {3}}-2}^{0}{\frac {1}{y^{2}+1}}\,\mathrm {d} y+{\frac {4}{3}}\int _{{\sqrt {3}}-2}^{0}{\frac {-1}{(y+1)^{2}}}\,\mathrm {d} y\\&=2\left[\arctan y\right]_{{\sqrt {3}}-2}^{0}+{\frac {4}{3}}\left[{\frac {1}{y+1}}\right]_{{\sqrt {3}}-2}^{0}\\&=2\times {\frac {\pi }{12}}+{\frac {4}{3}}\left(1-{\frac {1}{{\sqrt {3}}-1}}\right)\\&={\frac {\pi }{6}}+{\frac {2}{3}}-{\frac {2}{\sqrt {3}}}.\end{aligned}}}