En raison de limitations techniques, la typographie souhaitable du titre, « Signaux physiques (PCSI) : Circuits linéaires du premier ordre : stockage et dissipation d'énergie Signaux physiques (PCSI)/Circuits linéaires du premier ordre : stockage et dissipation d'énergie », n'a pu être restituée correctement ci-dessus.
« La puissance électrique instantanée reçue par une association série de dipôles est égale à la somme des puissances électriques instantanées reçues individuellement par chaque dipôle », en effet, chaque dipôle étant traversé par un courant de même intensité et la tension aux bornes de l'association série de dipôles étant la somme des tensions aux bornes de chaque dipôle c.-à-d. , la puissance électrique instantanée reçue par l'association en convention récepteur s'écrit soit finalement
« La puissance électrique instantanée reçue par une association parallèle de dipôles est égale à la somme des puissances électriques instantanées reçues individuellement par chaque dipôle », en effet, chaque dipôle étant soumis à la même tension et l'intensité du courant traversant l'association parallèle de dipôles étant la somme des intensités des courants traversant dipôle individuellement c.-à-d. , la puissance électrique instantanée reçue par l'association en convention récepteur s'écrit soit finalement
« L'échelon de tension » d'amplitude , de f.e.m. instantanée , étant en convention générateur, la puissance électrique instantanée qu'il délivre s'écrit
La puissance électrique instantanée fournie par « l'échelon de tension » d'amplitude , se retrouve en gain horaire d'énergie stockée dans le condensateur sous forme électrostatique et en puissance calorifique dissipée dans le conducteur ohmique soit
«» dans lequel
«», étant la tension instantanée aux bornes du condensateur en convention récepteur et sa charge instantanée et
«», étant l'intensité instantanée du courant fournie par la source et la tension instantanée aux bornes du conducteur ohmique en convention récepteur.
Étude des discontinuités éventuelles des grandeurs du bilan de puissance d'un « R C série » soumis à un échelon de tension
Nous avons vu dans le chap. de la leçon « Signaux physiques (PCSI) » que « l'intensité du courant de charge du condensateur d'unsérie soumis à un échelon de tension était discontinue de 1ère espèce en» [6],[7], cela entraîne une discontinuité de 1ère espèce [6] de
la puissance calorifiquedissipée dans le conducteur ohmique en ainsi que de
la puissance électrique instantanée[8]fournie par l'échelon de tension en ;
le bilan de puissance permet alors d'affirmer que « le gain horaire d'énergie stockée dans le condensateur sous forme électrostatique » a « une discontinuité de 1ère espèce [6] ou une continuité en » [9] ;
on peut vérifier que « le gain horaire d'énergie stockée dans le condensateur sous forme électrostatique » est
« continu si le condensateur est initialement déchargé » ou
« discontinu de 1ère espèce [6] s'il est initialement chargé »
en effet explicitant la « dérivée temporelle » [10], on obtient soit encore «» en utilisant la définition de l'intensité du courant de décharge du condensateur ; l'expression obtenue étant le produit, en , d'une grandeur continue et d'une autre discontinue de 1ère espèce [6], est discontinue de 1ère espèce [6] dans la mesure où ce qui nécessite que le condensateur soit chargé initialement ;
dans les deux cas, le fait que le gain horaire d'énergie stockée dans le condensateur sous forme électrostatique soit continu ou discontinu de 1ère espèce [6] est conforme au caractère continu de l'énergie stockée par le condensateur sous forme électrostatique.
Déduire du bilan de puissance d'un « R C série » soumis à un échelon de tension l'équation différentielle en tension de charge du condensateur, puis en son intensité de courant de charge
Déduire du bilan de puissance d'un « R C série » soumis à un échelon de tension d'amplitude E l'équation différentielle en tension de charge uC(t) du condensateur
Il suffit d'expliciter le calcul de la dérivée temporelle de l'énergie stockée par le condensateur sous forme électrostatique en fonction de sa tension de charge soit «» «» [11] ;
son report dans le bilan de puissance ainsi que celui de la puissance électrique instantanée fournie par l'échelon de tension et de la puissance calorifique dissipée dans le conducteur ohmique, toutes deux exprimées en fonction de l'intensité, conduit à «» ou, après simplification par [12] et remplacement de l'expression de restante par , on obtient soit en normalisant
Déduire du bilan de puissance d'un « R C série » soumis à un échelon de tension d'amplitude E l'équation différentielle en intensité du courant de charge i(t) du condensateur
Ayant déterminé l'équation différentielle en tension de charge du condensateur, il suffit de dériver une nouvelle fois par rapport à et multiplier par dans le but d'utiliser d'où l'équation différentielle cherchée
Multipliant le « bilan de puissance exprimé à l'instant » par , on obtient le bilan d'énergie sur l'intervalle soit
«»
c.-à-d. « le travail électrique élémentaire fourni par la source » se retrouvant en « gain d'énergie stockée dans le condensateur sous forme électrostatique » et en « énergie calorifique élémentaire dissipée dans le conducteur ohmique » [14] ou, en explicitant les différents termes
«» ;
écrivons maintenant le bilan d'énergie pour la durée totale de la charge du condensateur c.-à-d. sur l'intervalle théorique on obtient
«»
où « est le travail électrique fourni par la source pendant la durée de la charge » soit «» [15], où «[16] le gain d'énergie stockée dans le condensateur sous forme électrostatique » soit encore «» et où « la chaleur dissipée dans le conducteur ohmique » soit encore «» [15] ;
explicitons le travail électrique fourni par la source pendant la durée complète de la charge en remarquant que on trouve «» [16] soit, avec , l'expression finale du travail électrique fourni par la source pendant la durée complète de la charge
«» ;
du bilan d'énergie pendant la durée complète de la charge du condensateur, on en déduit la chaleur dissipée dans le conducteur ohmique soit
Remarque : le but étant de charger le condensateur, nous pouvons définir le rendement de cette charge comme le rapport de l'énergie stockée par le condensateur sous forme électrostatique sur l'énergie fournie par la source, nous trouvons alors «», l'énergie dissipée sous forme calorifique dans le conducteur ohmique représentant donc .
Bilan de puissance d'un « R L série » soumis à un échelon de tension et conséquences
La puissance électrique instantanée fournie par « l'échelon de tension » d'amplitude , se retrouve en gain horaire d'énergie stockée dans la bobine sous forme électromagnétique et en puissance calorifique dissipée dans le conducteur ohmique soit
«» dans lequel
«», étant l'intensité instantanée du courant traversant la bobine en convention récepteur et
«», étant aussi l'intensité instantanée du courant fournie par la source et la tension instantanée aux bornes du conducteur ohmique en convention récepteur.
Étude des discontinuités éventuelles des grandeurs du bilan de puissance d'un « R L série » soumis à un échelon de tension
Nous avons vu dans le chap. de la leçon « Signaux physiques (PCSI) » que « l'intensité du courant traversant la bobine d'unsérie soumis à un échelon de tension était continue en», cela entraîne, dans la mesure où la bobine n'est traversée par aucun courant initialement [18], une continuité, en, de
la puissance calorifiquedissipée dans le conducteur ohmique ainsi que de
la puissance électrique instantanée[19]fournie par l'échelon de tension ;
le bilan de puissance permet alors d'affirmer que « le gain horaire d'énergie stockée dans la bobine sous forme électromagnétique » est « continue en ».
Remarque : si la bobine était initialement [18] traversée par un courant d'intensité non nulle, « l'intensité du courant traversant la bobine d'unsérie soumis à un échelon de tension étant continue en», cela entraînerait,
Remarque : une continuité de la puissance calorifique dissipée dans le conducteur ohmique en mais
Remarque : une discontinuité de 1ère espèce [6] en ce même instant de la puissance électrique instantanée [20] fournie par l'échelon de tension ;
Remarque : le bilan de puissance permettrait alors d'affirmer que « le gain horaire d'énergie stockée dans la bobine sous forme électromagnétique » a « une discontinuité de 1ère espèce en » [6],[21].
on peut vérifier que « le gain horaire d'énergie stockée dans la bobine sous forme électromagnétique » est
« continu si la bobine n'est initialement traversée par aucun courant » ce qui est le cas usuel ou
« discontinu de 1ère espèce [6] si elle est initialement traversée par un courant »
en effet explicitant la « dérivée temporelle » [10], on obtient soit encore «» en utilisant la définition de la tension aux bornes de la bobine parfaite ; l'expression obtenue étant le produit, en , d'une grandeur continue et d'une autre discontinue de 1ère espèce [6], est discontinue de 1ère espèce [6] dans la mesure où ce qui nécessite que la bobine soit initialement traversée par un courant ;
dans les deux cas, le fait que le gain horaire d'énergie stockée dans la bobine sous forme électromagnétique soit continu ou discontinu de 1ère espèce [6] est conforme au caractère continu de l'énergie stockée par la bobine sous forme électromagnétique.
Déduire du bilan de puissance d'un « R L série » soumis à un échelon de tension l'équation différentielle en intensité de courant traversant la bobine, puis en la tension entre ses bornes
Déduire du bilan de puissance d'un « R L série » soumis à un échelon de tension d'amplitude E l'équation différentielle en intensité de courant i(t) traversant la bobine
Il suffit d'expliciter le calcul de la dérivée temporelle de l'énergie stockée par la bobine sous forme électromagnétique en fonction de l'intensité du courant la traversant soit «» «» ;
son report dans le bilan de puissance ainsi que celui de la puissance électrique instantanée fournie par l'échelon de tension et de la puissance calorifique dissipée dans le conducteur ohmique, toutes deux exprimées en fonction de l'intensité, conduit à «» ou, après simplification par [22], on obtient soit en normalisant
Déduire du bilan de puissance d'un « R L série » soumis à un échelon de tension d'amplitude E l'équation différentielle en tension uL(t) aux bornes de la bobine parfaite
Ayant déterminé l'équation différentielle en intensité de courant traversant la bobine, il suffit de dériver une nouvelle fois par rapport à et multiplier par dans le but d'utiliser d'où l'équation différentielle cherchée
Multipliant le « bilan de puissance exprimé à l'instant » par , on obtient le bilan d'énergie sur l'intervalle soit
«»
c.-à-d. « le travail électrique élémentaire fourni par la source » se retrouvant en « gain d'énergie stockée dans la bobine sous forme électromagnétique » et en « énergie calorifique élémentaire dissipée dans le conducteur ohmique » [14] ou, en explicitant les différents termes
«» ;
si nous écrivions maintenant le bilan d'énergie pour la durée totale de l'établissement du courant dans la bobine c.-à-d. sur l'intervalle théorique nous obtiendrions
«» avec
« le travail électrique fourni par la source pendant la durée de l'établissement du courant » qui s'écrirait encore «sous réserve de convergence [23]» [15], «[16] le gain d'énergie stockée dans la bobine sous forme électromagnétique » soit encore «» et « la chaleur dissipée dans le conducteur ohmique » qui s'écrirait encore «sous réserve de convergence [24]» [15], mais si nous écrivions les deux grandeurs «» et «» étant infinies [25], il y a donc divergence des intégrales généralisées [26] et il est nécessaire de restreindre la durée de l'établissement du courant dans la bobine pour travailler avec des grandeurs finies [27] aussi si nous écrivions considérons un instant à partir duquel nous pouvons estimer que le courant est « quasiment » [28] établi et si nous écrivions décomposons la 1ère intégrale selon «» soit, en faisant tendre vers , « une divergence » [26] à cause du « dernier terme », le « 1er terme » étant, quant à lui, fini et si nous écrivions décomposons la 2ème intégrale selon «» soit, en faisant tendre vers , « une divergence » [26] à cause du « dernier terme », le « 1er terme » étant, quant à lui, fini.
Nous allons écrire le bilan d'énergie sur un intervalle où est l'instant au-delà duquel la réponse forcée est établie à moins de près, Nous allons écrire le bilan d'énergie sur un intervalle en choisissant par exemple sachant que [29] d'où
«»
Nous allons écrire le bilan d'énergie sur un intervalle où « est le travail électrique fourni par la source pendant la durée de l'établissement du courant à près », soit «»,
Nous allons écrire le bilan d'énergie sur un intervalle où «[16] le gain d'énergie stockée dans la bobine sous forme électromagnétique à moins de près », soit «» et
Nous allons écrire le bilan d'énergie sur un intervalle où « la chaleur dissipée dans le conducteur ohmique pendant la durée de » soit «» ;
Nous allons écrire le bilan d'énergie sur un intervalle à partir de l'expression de l'intensité du courant traversant la bobine «» [30] nous pouvons évaluer
le travail électrique fourni par la source pendant la durée de selon «» [31] ou encore, avec et [16],
Remarque : le but étant d'établir un courant dans la bobine à un pourcentage près nous choisirons à près [29], nous pouvons définir le rendement de cet établissement comme le rapport de l'énergie stockée dans la bobine sous forme électromagnétique pendant la durée sur l'énergie fournie par la source pendant la même durée «», l'énergie dissipée sous forme calorifique dans le conducteur ohmique pendant la durée représentant donc approximativement .
Puissance électrique instantanée fournie par un échelon de courant d'amplitude I0 imposant une tension u(t)
« L'échelon de courant » d'amplitude , de c.e.m. instantané , étant en convention générateur, la puissance électrique instantanée qu'il délivre s'écrit
circuit série soumis à un « échelon de tension » d'amplitude [37]
circuit parallèle [38] soumis à un « échelon de courant » d'amplitude [39]
énergie électrostatique stockée dans un condensateur parfait de capacité soumis à une tension :
énergie électromagnétique stockée dans une bobine parfaite d'inductance propre traversée par un courant d'intensité :
puissance calorifique dissipée dans un conducteur ohmique de résistance traversé par un courant d'intensité :
puissance calorifique dissipée dans un conducteur ohmique de conductance soumis à une tension :
puissance instantanée électrique fournie par un échelon de tension d'amplitude délivrant un courant d'intensité :
puissance instantanée électrique fournie par une échelon de courant d'amplitude imposant une tension :
circuit série soumis à un « échelon de tension » d'amplitude [37]
circuit parallèle [38] soumis à un « échelon de courant » d'amplitude [39]
énergie électromagnétique stockée dans une bobine parfaite d'inductance propre traversée par un courant d'intensité :
énergie électrostatique stockée dans un condensateur parfait de capacité soumis à une tension :
Dual du bilan de puissance d'un « R L série » soumis à un échelon de tension : bilan de puissance d'un « R' C parallèle » soumis à un échelon de courant
Bilan de puissance d'unsérie soumis à un échelon de tension : La puissance électrique instantanée fournie par « l'échelon de tension » d'amplitude , se retrouve en gain horaire d'énergie stockée dans la bobine sous forme électromagnétique et en puissance calorifique dissipée dans le conducteur ohmique soit
«» dans lequel
«», étant l'intensité instantanée du courant traversant la bobine en convention récepteur et
«», étant aussi l'intensité instantanée du courant fournie par la source et la tension instantanée aux bornes du conducteur ohmique en convention récepteur.
Bilan de puissance d'unparallèle soumis à un échelon de courantdéterminé par dualité : La puissance électrique instantanée fournie par « l'échelon de courant » d'amplitude , se retrouve en gain horaire d'énergie stockée dans le condensateur sous forme électrostatique et en puissance calorifique dissipée dans le conducteur ohmique soit
«» dans lequel
«», étant la tension instantanée aux bornes du condensateur en convention récepteur et
«», étant aussi la tension instantanée aux bornes du conducteur ohmique et l'intensité instantanée du courant traversant ce dernier en convention récepteur.
Dual du bilan de puissance d'un « R C série » soumis à un échelon de tension : bilan de puissance d'un « R' L parallèle » soumis à un échelon de courant
Bilan de puissance d'unsoumis à un échelon de tension : La puissance électrique instantanée fournie par « l'échelon de tension » d'amplitude , se retrouve en gain horaire d'énergie stockée dans le condensateur sous forme électrostatique et en puissance calorifique dissipée dans le conducteur ohmique soit
«» dans lequel
«», étant la tension instantanée aux bornes du condensateur en convention récepteur et
«», étant aussi l'intensité instantanée du courant fournie par la source et la tension instantanée aux bornes du conducteur ohmique en convention récepteur.
Bilan de puissance d'unsoumis à un échelon de courantdéterminé par dualité : La puissance électrique instantanée fournie par « l'échelon de courant » d'amplitude , se retrouve en gain horaire d'énergie stockée dans la bobine sous forme électromagnétique et en puissance calorifique dissipée dans le conducteur ohmique soit
«» dans lequel
«», étant l'intensité instantanée du courant traversant la bobine en convention récepteur et
«», étant aussi la tension instantanée aux bornes du conducteur ohmique et l'intensité instantanée du courant traversant ce dernier en convention récepteur.
Obtention directe du bilan de puissance d'un « R C parallèle » soumis à un échelon de courant et conséquences
La puissance électrique instantanée fournie par « l'échelon de courant » d'amplitude , se retrouve en gain horaire d'énergie stockée dans le condensateur sous forme électrostatique et en puissance calorifique dissipée dans le conducteur ohmique soit
«» dans lequel
«», étant la tension instantanée aux bornes du condensateur en convention récepteur et
«», étant aussi la tension instantanée aux bornes du conducteur ohmique et l'intensité instantanée du courant traversant ce dernier en convention récepteur.
Étude des discontinuités éventuelles des grandeurs du bilan de puissance d'un « R C parallèle » soumis à un échelon de courant
Nous avons vu dans le chap. de la leçon « Signaux physiques (PCSI) » que « la tension aux bornes du condensateur d'unparallèle soumis à un échelon de courant était continue en», cela entraîne, dans la mesure où le condensateur est initialement [18] déchargé, une continuité, en, de
la puissance calorifiquedissipée dans le conducteur ohmique ainsi que de
la puissance électrique instantanée[40]fournie par l'échelon de courant ;
le bilan de puissance permet alors d'affirmer que « le gain horaire d'énergie stockée dans le condensateur sous forme électrostatique » est « continue en ».
Remarque : si le condensateur était initialement [18] chargé par une tension non nulle, « la tension aux bornes du condensateur d'unparallèle soumis à un échelon de courant étant continue en», cela entraînerait,
Remarque : une continuité de la puissance calorifique dissipée dans le conducteur ohmique en mais
Remarque : une discontinuité de 1ère espèce [6] en ce même instant de la puissance électrique instantanée [41] fournie par l'échelon de courant ;
Remarque : le bilan de puissance permettrait alors d'affirmer que « le gain horaire d'énergie stockée dans le condensateur sous forme électrostatique » a « une discontinuité de 1ère espèce en » [6],[21].
on peut vérifier que « le gain horaire d'énergie stockée dans le condensateur sous forme électrostatique » est
« continu si le condensateur est initialement déchargé » ce qui est le cas usuel ou
« discontinu de 1ère espèce [6] s'il est initialement chargé »
en effet explicitant la « dérivée temporelle » [10], on obtient soit encore «» en utilisant la définition de l'intensité du courant traversant le condensateur parfait ; l'expression obtenue étant le produit, en , d'une grandeur continue et d'une autre discontinue de 1ère espèce [6], est discontinue de 1ère espèce [6] dans la mesure où ce qui nécessite que le condensateur soit initialement chargé ;
dans les deux cas, le fait que le gain horaire d'énergie stockée dans le condensateur sous forme électrostatique soit continu ou discontinu de 1ère espèce [6] est conforme au caractère continu de l'énergie stockée par le condensateur sous forme électrostatique.
Équation différentielle en tension aux bornes du condensateur puis en son intensité de courant de charge d'un « R C parallèle » soumis à un échelon de courant déduite du bilan de puissance
Déduire du bilan de puissance d'un « R C parallèle » soumis à un échelon de courant d'amplitude I0 l'équation différentielle en tension u(t) aux bornes du condensateur
Il suffit d'expliciter le calcul de la dérivée temporelle de l'énergie stockée par le condensateur sous forme électrostatique en fonction de la tension à ses bornes soit «» «» ;
son report dans le bilan de puissance ainsi que celui de la puissance électrique instantanée fournie par l'échelon de courant et de la puissance calorifique dissipée dans le conducteur ohmique, toutes deux exprimées en fonction de la tension, conduit à «» ou, après simplification par [42], on obtient soit en normalisant
Déduire du bilan de puissance d'un « R C parallèle » soumis à un échelon de courant d'amplitude I0 l'équation différentielle en intensité iC(t) du courant de charge du condensateur
Ayant déterminé l'équation différentielle en tension aux bornes du condensateur, il suffit de dériver une nouvelle fois par rapport à et multiplier par dans le but d'utiliser d'où l'équation différentielle cherchée
La puissance électrique instantanée fournie par « l'échelon de courant » d'amplitude , se retrouve en gain horaire d'énergie stockée dans la bobine sous forme électromagnétique et en puissance calorifique dissipée dans le conducteur ohmique soit
«» dans lequel
«», étant l'intensité instantanée du courant traversant la bobine parfaite en convention récepteur liée à la tension instantanée à ses bornes par et
«», étant aussi la tension instantanée aux bornes du conducteur ohmique et l'intensité instantanée du courant traversant ce dernier en convention récepteur.
Étude des discontinuités éventuelles des grandeurs du bilan de puissance d'un « R L parallèle » soumis à un échelon de courant
Nous avons vu dans le chap. de la leçon « Signaux physiques (PCSI) » que « la tension aux bornes de la bobine parfaite d'unparallèle soumis à un échelon de courant était discontinue de 1ère espèce en» [6],[43], cela entraîne une discontinuité de 1ère espèce [6] de
la puissance calorifiquedissipée dans le conducteur ohmique en ainsi que de
la puissance électrique instantanée[44]fournie par l'échelon de courant en ;
le bilan de puissance permet alors d'affirmer que « le gain horaire d'énergie stockée dans la bobine parfaite sous forme électromagnétique » a « une discontinuité de 1ère espèce [6] ou une continuité en » [9] ;
on peut vérifier que « le gain horaire d'énergie stockée dans la bobine parfaite sous forme électromagnétique » est
« continu si la bobine n'est initialement traversée par aucun courant » ou
« discontinu de 1ère espèce [6] si elle est initialement traversée par un courant d'intensité non nulle »
en effet explicitant la « dérivée temporelle » [10], on obtient soit encore «» en utilisant la définition de la tension aux bornes de la bobine parfaite ; l'expression obtenue étant le produit, en , d'une grandeur continue et d'une autre discontinue de 1ère espèce [6], est discontinue de 1ère espèce [6] dans la mesure où ce qui nécessite que la bobine soit initialement traversée par un courant ;
dans les deux cas, le fait que le gain horaire d'énergie stockée dans la bobine parfaite sous forme électromagnétique soit continu ou discontinu de 1ère espèce [6] est conforme au caractère continu de l'énergie stockée par la bobine sous forme électromagnétique.
Équation différentielle en intensité de courant traversant la bobine puis en la tension à ses bornes d'un « R L parallèle » soumis à un échelon de courant déduite du bilan de puissance
Déduire du bilan de puissance d'un « R L parallèle » soumis à un échelon de courant d'amplitude I0 l'équation différentielle en intensité iL(t) du courant traversant la bobine
Il suffit d'expliciter le calcul de la dérivée temporelle de l'énergie stockée par la bobine sous forme électromagnétique en fonction de l'intensité du courant la traversant soit «» «» [45] ;
son report dans le bilan de puissance ainsi que celui de la puissance électrique instantanée fournie par l'échelon de courant et de la puissance calorifique dissipée dans le conducteur ohmique, toutes deux exprimées en fonction de la tension, conduit à «» ou, après simplification par [46], on obtient soit, en éliminant au profit de par définition de la tension aux bornes d'une bobine parfaite