Théorie des groupes/Produit semi-direct

Début de la boite de navigation du chapitre
fin de la boite de navigation du chapitre
En raison de limitations techniques, la typographie souhaitable du titre, « Théorie des groupes : Produit semi-direct
Théorie des groupes/Produit semi-direct
 », n'a pu être restituée correctement ci-dessus.

Opération d'un groupe sur un groupe par automorphismes

modifier

Sauf indication contraire, on entendra par « opération » d'un groupe une opération à gauche.

Nous avons vu qu'une opération d'un groupe G sur un ensemble X peut être vue soit comme une application   (satisfaisant à certaines conditions), soit comme un homomorphisme   de G dans le groupe symétrique  . Si l’ensemble X est lui-même muni d'une structure de groupe et que   prend ses valeurs dans le sous-groupe Aut(X) de  , on dit que G opère sur le groupe X par automorphismes.

Une opération d'un groupe G sur un groupe H par automorphismes peut donc être vue soit comme un homomorphisme de G dans le groupe Aut(H), soit comme une opération   (notation exponentielle gauche) qui, outre les propriétés :

  et  

des opérations d'un groupe sur un ensemble, possède de plus la propriété :

 .


Début de l'exemple
Fin de l'exemple


Produit semi-direct

modifier


Les conditions (1) et (2) sont symétriques en H et K (pour déduire   de  , passer aux inverses), donc si K est un complément de H, alors H est un complément de K. On dit aussi que H et K sont complémentaires (dans G).

Dans ce cas, tout élément de G s'écrit d'une et une seule façon sous la forme hk avec   et   :

  • l’existence d'une telle écriture résulte de (2) ;
  • pour prouver l'unicité, notons que si h, h' sont des éléments de H et k, k' des éléments de K ; si  , alors  , de sorte que les deux membres appartiennent à  , qui est égal à 1 d’après (1), d'où   d'où   et  .

Ceci montre en particulier que G est équipotent au produit cartésien des ensembles sous-jacents de H et de K, donc :

 .

(Cela se déduit aussi de la formule du produit.)

Le lecteur vérifiera que, réciproquement, si H et K sont des sous-groupes de G, si tout élément de G s'écrit d'une et une seule façon sous la forme hk avec   et  , alors H et K sont complémentaires.

D'après ce qui précède, tout élément de G s'écrit dans ce cas d'une et une seule façon sous la forme hk avec   et  .

Début d’un théorème
Fin du théorème

Démonstration très facile, laissée au lecteur.

Début d’un théorème
Fin du théorème

Remarques.

  • Ce théorème revient à dire que tout produit semi-direct d'un groupe H par un groupe K est une extension de H par K.
  • La réciproque est fausse, c'est-à-dire que si G est un groupe, H un sous-groupe normal de G et K un sous-groupe de G isomorphe à G/H, G n'est pas nécessairement produit semi-direct de H par K (exemple : G = le groupe cyclique d'ordre 4, H = son sous-groupe d'ordre 2).

Puisque H est normal dans G, nous pouvons considérer l'homomorphisme   de K dans Aut(H) défini à l'exemple 3 ci-dessus. La relation (a) s'écrit :

 .

Cela nous suggère la définition suivante :



Début d’un théorème
Fin du théorème



Début d’un théorème
Fin du théorème


Début d'un lemme
Fin du lemme


Début d’un théorème
Fin du théorème


Début d’un théorème
Fin du théorème

Remarques. 1) Soient H et K deux groupes, soit   l'opération triviale de K sur H, c'est-à-dire l'opération pour laquelle   pour tout h dans H et tout k dans K. Alors, il résulte de la définition de   que   est identique au produit direct  .

2) Soient G un groupe, H un sous-groupe distingué de G et K un sous-groupe de G tels que G soit produit semi-direct interne de H par K. Supposons de plus que tout élément de K commute avec tout élément de H. Alors l'opération de K sur H par automorphismes définie par   pour tout h dans H et tout k dans K est l'opération triviale. Donc, d’après la remarque précédente, le produit semi-direct externe   est identique au produit direct externe  . D'après un théorème ci-dessus, l’application   définit donc un isomorphisme du produit direct externe   sur G. Par définition du produit direct interne, il en résulte que G est produit direct interne de H et de K. (On pourrait évidemment le démontrer sans passer par le produit semi-direct. Du fait que tout élément de K commute avec tout élément de H, on tire facilement que H normalise K, donc, puisque HK est égal à G tout entier, K est normal dans G et on est ramené à un théorème du chapitre sur le produit direct.)

3) La seconde projection de   sur K est un homomorphisme de   sur K mais la première projection n'est un homomorphisme de   sur H que si l'opération   est triviale (et que le produit semi-direct est donc direct).


Remarque. Dans les expressions « quasi équivalentes comme actions par automorphismes » et « équivalentes comme actions par automorphismes », nous omettrons parfois les mots « comme actions par automorphismes ».

Début d’un théorème
Fin du théorème

Produit semi-direct et opérations à droite

modifier

Soit   une opération à droite (par automorphismes) d'un groupe K sur un groupe H. Les auteurs qui préfèrent les opérations à droite aux opérations à gauche définissent le produit semi-direct externe   de H par K (noter la différence entre les symboles   et  ) en munissant l’ensemble   de la loi de composition interne

 

ou encore, si on représente   par la notation exponentielle droite,

 

On pourrait prouver, comme on l'a fait pour une opération à gauche, que la loi ainsi définie est bien une loi de groupe, mais on peut faire d'une pierre deux coups en vérifiant (tâche facile laissée au lecteur) que si   désigne l'opération à gauche de K sur H définie par

 

alors

 

définit un isomorphisme de magmas de   sur   Puisqu'un magma isomorphe comme magma à un groupe est lui-même un groupe et que tout isomorphisme de magmas entre groupes est un isomorphisme de groupes (voir chapitre Groupes, premières notions), nous avons prouvé que   est un groupe isomorphe à  .

Facteur semi-direct normal

modifier

La présente section peut être omise en première lecture.

Nous définirons un facteur semi-direct normal d'un groupe G comme un sous-groupe normal de G ayant un complément dans G. Autrement dit, N est un facteur direct normal de G si et seulement s'il existe un sous-groupe Q de G tel que G soit produit semi-direct de N par Q.

Début d’un théorème
Fin du théorème


On laisse la démonstration au lecteur, car elle est à peu près identique à celle de l'équivalence des conditions (i) à (iv) d'un cas particulier démontré dans le chapitre Produit direct et somme restreinte, théorème 23. Noter que la condition (v) du cas particulier doit être omise dans le cas général.

Notes et références

modifier
  1. Ceci est la terminologie de J. Calais, Éléments de théorie des groupes, Paris, 1984, p. 191. D'autres auteurs disent « produit semi-direct de K par H ». C'est le cas par exemple de N. Bourbaki, Algèbre, ch. I, § 6, no 1, corollaire, Paris, 1970, p. 65. On préfère dans le présent exposé l’expression « de H par K » parce qu’il sera question d'une opération de K sur H, ce qui fait apparaître K comme actif et H comme passif.