Hypothèse : l'onde de pression est longitudinale :
∂
p
∂
θ
=
0
{\displaystyle {\frac {\partial p}{\partial \theta }}=0}
et
∂
p
∂
ϕ
=
0
{\displaystyle {\frac {\partial p}{\partial \phi }}=0}
.
g
r
a
d
→
p
=
∇
→
p
=
∂
p
∂
r
e
r
→
+
1
r
∂
p
∂
θ
e
θ
→
+
1
r
sin
θ
∂
p
∂
ϕ
e
ϕ
→
=
∂
p
∂
r
e
r
→
{\displaystyle {\overrightarrow {\mathrm {grad} }}\ p={\overrightarrow {\nabla }}p={\frac {\partial p}{\partial r}}{\overrightarrow {e_{r}}}+{\frac {1}{r}}{\frac {\partial p}{\partial \theta }}{\overrightarrow {e_{\theta }}}+{\frac {1}{r\sin \theta }}{\frac {\partial p}{\partial \phi }}{\overrightarrow {e_{\phi }}}={\frac {\partial p}{\partial r}}{\overrightarrow {e_{r}}}}
Hypothèse : l'onde de vitesse est longitudinale :
v
→
=
v
e
→
r
{\displaystyle {\vec {v}}=v\ {\vec {e}}_{r}}
.
L'équation d'Euler peut alors s'écrire :
ρ
0
∂
v
∂
t
=
−
∂
p
∂
r
{\displaystyle \rho _{0}{\frac {\partial v}{\partial t}}=-{\frac {\partial p}{\partial r}}}
.
Hypothèse : l'onde de pression s'atténue en 1/r.
p
(
r
,
t
)
=
P
^
(
1
m
)
r
⋅
cos
(
ω
t
−
k
r
+
φ
)
=
P
(
r
)
2
⋅
cos
(
ω
t
−
k
r
+
φ
)
{\displaystyle p(r,t)={\frac {{\hat {P}}(1\,\mathrm {m} )}{r}}\cdot \cos(\omega \,t-k\,r+\varphi )=P(r){\sqrt {2}}\cdot \cos(\omega \,t-k\,r+\varphi )}
Sous forme complexe pour simplifier les calculs.
p
_
(
r
,
t
)
=
P
(
r
)
⋅
e
j
(
ω
t
−
k
r
+
φ
)
=
P
(
1
m
)
r
⋅
e
j
(
ω
t
−
k
r
+
φ
)
{\displaystyle {\underline {p}}(r,t)=P(r)\cdot \mathrm {e} ^{\mathrm {j} (\omega \,t-k\,r+\varphi )}={\frac {P(1\,\mathrm {m} )}{r}}\cdot \mathrm {e} ^{\mathrm {j} (\omega \,t-k\,r+\varphi )}}
Expression de la vitesse acoustique
modifier
Par dérivation
∂
p
∂
r
=
−
P
(
1
m
)
r
2
⋅
cos
(
ω
t
−
k
r
+
φ
)
+
k
⋅
P
(
1
m
)
r
⋅
sin
(
ω
t
−
k
r
+
φ
)
{\displaystyle {\frac {\partial p}{\partial r}}=-{\frac {P(1\,\mathrm {m} )}{r^{2}}}\cdot \cos(\omega \,t-k\,r+\varphi )+k\cdot {\frac {P(1\,\mathrm {m} )}{r}}\cdot \sin(\omega \,t-k\,r+\varphi )}
∂
v
∂
t
=
−
1
ρ
0
∂
p
∂
r
=
−
1
ρ
0
⋅
P
(
1
m
)
r
(
−
1
r
⋅
cos
(
ω
t
−
k
r
+
φ
)
+
k
⋅
sin
(
ω
t
−
k
r
+
φ
)
)
{\displaystyle {\frac {\partial v}{\partial t}}=-{\frac {1}{\rho _{0}}}{\frac {\partial p}{\partial r}}=-{\frac {1}{\rho _{0}}}\cdot {\frac {P(1\,\mathrm {m} )}{r}}\left(-{\frac {1}{r}}\cdot \cos(\omega \,t-k\,r+\varphi )+k\cdot \sin(\omega \,t-k\,r+\varphi )\right)}
En cherchant la primitive :
v
=
1
ρ
0
⋅
P
(
1
m
)
r
(
1
ω
r
⋅
sin
(
ω
t
−
k
r
+
φ
)
+
k
ω
⋅
cos
(
ω
t
−
k
r
+
φ
)
)
{\displaystyle v={\frac {1}{\rho _{0}}}\cdot {\frac {P(1\,\mathrm {m} )}{r}}\left({\frac {1}{\omega \,r}}\cdot \sin(\omega \,t-k\,r+\varphi )+{\frac {k}{\omega }}\cdot \cos(\omega \,t-k\,r+\varphi )\right)}
v
=
1
ρ
0
c
⋅
P
(
1
m
)
r
(
1
k
r
⋅
sin
(
ω
t
−
k
r
+
φ
)
+
cos
(
ω
t
−
k
r
+
φ
)
)
{\displaystyle v={\frac {1}{\rho _{0}\,c}}\cdot {\frac {P(1\,\mathrm {m} )}{r}}\left({\frac {1}{k\,r}}\cdot \sin(\omega \,t-k\,r+\varphi )+\cos(\omega \,t-k\,r+\varphi )\right)}
v
=
1
ρ
0
c
⋅
1
+
k
2
r
2
k
r
⋅
P
(
1
m
)
r
(
1
1
+
k
2
r
2
⋅
sin
(
ω
t
−
k
r
+
φ
)
+
k
r
1
+
k
2
r
2
cos
(
ω
t
−
k
r
+
φ
)
)
{\displaystyle v={\frac {1}{\rho _{0}\,c}}\cdot {\frac {\sqrt {1+k^{2}\,r^{2}}}{k\,r}}\cdot {\frac {P(1\,\mathrm {m} )}{r}}\left({\frac {1}{\sqrt {1+k^{2}\,r^{2}}}}\cdot \sin(\omega \,t-k\,r+\varphi )+{\frac {k\,r}{\sqrt {1+k^{2}\,r^{2}}}}\cos(\omega \,t-k\,r+\varphi )\right)}
v
=
1
ρ
0
c
⋅
1
+
k
2
r
2
k
r
⋅
P
(
1
m
)
r
(
sin
ψ
⋅
sin
(
ω
t
−
k
r
+
φ
)
+
cos
ψ
⋅
cos
(
ω
t
−
k
r
+
φ
)
)
{\displaystyle v={\frac {1}{\rho _{0}\,c}}\cdot {\frac {\sqrt {1+k^{2}\,r^{2}}}{k\,r}}\cdot {\frac {P(1\,\mathrm {m} )}{r}}\left(\sin \psi \cdot \sin(\omega \,t-k\,r+\varphi )+\cos \psi \cdot \cos(\omega \,t-k\,r+\varphi )\right)}
v
=
1
ρ
0
c
⋅
1
+
k
2
r
2
k
r
⋅
P
(
1
m
)
r
⋅
cos
(
ω
t
−
k
r
+
φ
−
ψ
)
{\displaystyle v={\frac {1}{\rho _{0}\,c}}\cdot {\frac {\sqrt {1+k^{2}\,r^{2}}}{k\,r}}\cdot {\frac {P(1\,\mathrm {m} )}{r}}\cdot \cos(\omega \,t-k\,r+\varphi -\psi )}
Expression de la vitesse acoustique complexe
modifier
∂
p
_
∂
r
=
(
−
P
(
1
m
)
r
2
⋅
e
−
j
k
r
−
j
k
⋅
P
(
1
m
)
r
⋅
e
−
j
k
r
)
⋅
e
j
(
ω
t
+
φ
)
{\displaystyle {\frac {\partial {\underline {p}}}{\partial r}}=\left(-{\frac {P(1\,\mathrm {m} )}{r^{2}}}\cdot \mathrm {e} ^{-\mathrm {j} k\,r}-\mathrm {j} \,k\cdot {\frac {P(1\,\mathrm {m} )}{r}}\cdot \mathrm {e} ^{-\mathrm {j} k\,r}\right)\cdot \mathrm {e} ^{\mathrm {j} (\omega \,t+\varphi )}}
∂
v
_
∂
t
=
−
1
ρ
0
∂
p
_
∂
r
=
1
ρ
0
(
1
r
+
j
k
)
⋅
P
(
1
m
)
r
⋅
e
j
(
ω
t
−
k
r
+
φ
)
{\displaystyle {\frac {\partial {\underline {v}}}{\partial t}}=-{\frac {1}{\rho _{0}}}{\frac {\partial {\underline {p}}}{\partial r}}={\frac {1}{\rho _{0}}}\left({\frac {1}{r}}+\mathrm {j} \,k\right)\cdot {\frac {P(1\,\mathrm {m} )}{r}}\cdot \mathrm {e} ^{\mathrm {j} (\omega \,t-k\,r+\varphi )}}
v
_
=
1
j
ω
ρ
0
(
1
r
+
j
k
)
⋅
P
(
1
m
)
r
⋅
e
j
(
ω
t
−
k
r
+
φ
)
{\displaystyle {\underline {v}}={\frac {1}{\mathrm {j} \,\omega \,\rho _{0}}}\left({\frac {1}{r}}+\mathrm {j} \,k\right)\cdot {\frac {P(1\,\mathrm {m} )}{r}}\cdot \mathrm {e} ^{\mathrm {j} (\omega \,t-k\,r+\varphi )}}
Sachant que
k
ω
=
1
c
{\displaystyle {\frac {k}{\omega }}={\frac {1}{c}}}
alors :
v
_
=
1
j
ρ
0
c
(
1
k
r
+
j
)
⋅
p
_
{\displaystyle {\underline {v}}={\frac {1}{\mathrm {j} \,\rho _{0}\,c}}\left({\frac {1}{k\,r}}+\mathrm {j} \right)\cdot {\underline {p}}}
Expression de l'impédance acoustique complexe
modifier
Z
_
=
p
_
v
_
=
j
ρ
0
c
(
k
r
1
+
j
k
r
)
{\displaystyle {\underline {Z}}={\frac {\underline {p}}{\underline {v}}}=\mathrm {j} \,\rho _{0}\,c\left({\frac {k\,r}{1+\mathrm {j} \,k\,r}}\right)}
Z
=
|
Z
_
|
=
ρ
0
c
(
k
r
1
+
k
2
r
2
)
{\displaystyle Z=|{\underline {Z}}|=\rho _{0}\,c\left({\frac {k\,r}{\sqrt {1+k^{2}\,r^{2}}}}\right)}
ψ
=
A
r
g
(
Z
_
)
{\displaystyle \psi =\mathrm {Arg} ({\underline {Z}})}
cos
ψ
=
k
r
1
+
k
2
r
2
{\displaystyle \cos \psi ={\frac {k\,r}{\sqrt {1+k^{2}\,r^{2}}}}}
Expression de l'intensité acoustique
modifier
I
→
(
r
)
=
1
T
∫
0
T
p
(
r
,
t
)
v
→
(
r
,
t
)
d
t
{\displaystyle {\vec {I}}(r)={\frac {1}{T}}\int _{0}^{T}p(r,t)\,{\vec {v}}(r,t)\,\mathrm {d} t}
p
v
=
1
ρ
0
c
⋅
1
+
k
2
r
2
k
r
⋅
P
2
(
1
m
)
r
2
cos
(
ω
t
−
k
r
+
φ
)
cos
(
ω
t
−
k
r
+
φ
−
ψ
)
d
t
{\displaystyle p\,v={\frac {1}{\rho _{0}\,c}}\cdot {\frac {\sqrt {1+k^{2}\,r^{2}}}{k\,r}}\cdot {\frac {P^{2}(1\,\mathrm {m} )}{r^{2}}}\cos(\omega \,t-k\,r+\varphi )\cos(\omega \,t-k\,r+\varphi -\psi )\,\mathrm {d} t}
p
v
=
1
ρ
0
c
⋅
1
+
k
2
r
2
k
r
⋅
P
2
(
1
m
)
r
2
(
cos
(
−
ψ
)
+
cos
(
2
ω
t
−
2
k
r
+
2
φ
−
ψ
)
)
{\displaystyle p\,v={\frac {1}{\rho _{0}\,c}}\cdot {\frac {\sqrt {1+k^{2}\,r^{2}}}{k\,r}}\cdot {\frac {P^{2}(1\,\mathrm {m} )}{r^{2}}}\left(\cos(-\psi )+\cos(2\,\omega \,t-2\,k\,r+2\,\varphi -\psi )\right)}
I
(
r
)
=
1
ρ
0
c
⋅
1
+
k
2
r
2
k
r
⋅
P
2
(
1
m
)
r
2
cos
ψ
=
P
2
(
r
)
ρ
0
c
{\displaystyle I(r)={\frac {1}{\rho _{0}\,c}}\cdot {\frac {\sqrt {1+k^{2}\,r^{2}}}{k\,r}}\cdot {\frac {P^{2}(1\,\mathrm {m} )}{r^{2}}}\cos \psi ={\frac {P^{2}(r)}{\rho _{0}\,c}}}
Expression de l'intensité acoustique complexe
modifier
I
_
(
r
)
=
∫
0
T
p
_
(
r
,
t
)
v
_
∗
(
r
,
t
)
d
t
{\displaystyle {\underline {I}}(r)=\int _{0}^{T}{\underline {p}}(r,t)\,{\underline {v}}^{*}(r,t)\,\mathrm {d} t}
I
_
(
r
)
=
1
−
j
ρ
0
c
1
−
j
k
r
k
r
⋅
p
_
∗
⋅
p
_
=
1
ρ
0
c
j
+
k
r
k
r
⋅
P
2
(
r
)
{\displaystyle {\underline {I}}(r)={\frac {1}{-\mathrm {j} \,\rho _{0}\,c}}{\frac {1-\mathrm {j} \,k\,r}{k\,r}}\cdot {\underline {p}}^{*}\cdot {\underline {p}}={\frac {1}{\rho _{0}\,c}}{\frac {\mathrm {j} +k\,r}{k\,r}}\cdot P^{2}(r)}
I
(
r
)
=
R
e
(
I
_
(
r
)
)
=
P
2
(
r
)
ρ
0
c
{\displaystyle I(r)=\mathrm {Re} ({\underline {I}}(r))={\frac {P^{2}(r)}{\rho _{0}\,c}}}