Approfondissement sur les suites numériques/Relations de comparaison
Dans cette leçon, on va aborder les relations de comparaison entre les suites, et l'objectif est d'étudier le comportement des suites en l'infini. Une première information sur ce comportement est donnée par la limite de la suite, mais cela ne suffit pas pour décrire son comportement en l'infini.
Par exemple, les deux suites définies par et divergent toutes les deux vers mais ne divergent pas à la même vitesse, car l'exponentielle croît beaucoup plus vite, comme en témoigne la limite . L'objectif des notions présentées ici va justement être de formaliser ces différences, et elles trouveront des applications dans le calcul de limite, et dans le cours sur les séries elles permettront d'étudier la convergence des séries.
Les notions abordées dans cette leçon pour les suites (équivalence, domination et négligeabilité) sont un cas particulier des mêmes notions pour les fonctions.
Suites dominées
modifierUne suite sera dite dominée par une autre si son comportement en l'infini est « encadré » par la suite dominante, et cela permet d'obtenir des informations sur la suite dominée. On traduit cette idée dans la définition suivante :
Soient et deux suites. On dit que est dominée par , ce que l'on note , ou plus simplement , lorsqu'il existe une suite bornée telle que à partir d'un certain rang.
- Remarque
- La notation utilisée ici est celle de Landau. Il existe une autre notation, la notation de Hardy, moins courante, où l'on note pour signifier que est dominée par .
- On remarque que deux suites différentes et peuvent être dominées par la même suite . Dans ce cas l'emploi du signe égalité dans la notation de Landau peut prêter à confusion car on écrit : et avec malgré tout . Pour éviter cette confusion, on pourrait écrire où désigne l'ensemble des suites dominées par , mais nous nous conformerons à la pratique courante de la notation.
À ce stade, il faut savoir comment se comporte la relation de comparaison vis-à-vis des opérations usuelles, et ici (contrairement à l'équivalence) tout se passe bien comme nous l'assure le résultat suivant :
Soient des suites numériques, et .
- Si et alors .
- Si et alors .
- Si et alors .
Démontrons le premier point, les autres se démontrant de façon similaire.
- Soient trois suites. Si alors et une suite bornée tels que . De même, et une suite bornée tels que .
- Alors , et la suite est bornée.
- Ce qui montre que .
Voyons quelques applications de la domination :
Si alors :
- Si est bornée, alors également. En particulier, si converge alors est bornée.
- Si alors .
Les résultats découlent directement de la définition.
- En effet, il existe une suite bornée par et un entier tels que .
- D'où : , et l'on déduit les résultats souhaités.
Suites négligeables
modifierVoyons maintenant la notion de suite négligeable devant une autre. Concrètement, ce phénomène se produit lorsqu'une suite est « beaucoup plus petite » ou « beaucoup moins grande » qu'une autre quand devient très grand.
Soient et deux suites. On dit que est négligeable devant , ou que est prépondérante devant , ce que l'on note , ou plus simplement , lorsqu'il existe une suite telle que et que à partir d'un certain rang.
La même remarque que pour la domination s'applique concernant la notation . Et l'on conserve une caractérisation plus simple à l'aide d'un quotient comme nous l'indique la proposition suivante :
De même que pour la domination, la notion de prépondérance se comporte bien vis-à-vis des opérations algébriques sur les suites.
Soient des suites numériques, et .
- Si et alors .
- Si et alors .
- Si et alors .
Démontrons le premier point, les autres se démontrant de façon similaire.
- Soient trois suites. Si alors et une suite tels que et . De même, et une suite tels que et .
- Alors , et la suite tend vers .
- Ce qui montre que .
Les applications de cette notion se manifestent également dans le comportement « à l'infini » des suites, ce qui est, rappelons-le, l'objectif des notions développées dans cette leçon.
Si alors :
Si est bornée, alors .
- En particulier, si converge, alors .
Les résultats découlent directement de la définition.
- En effet, il existe une suite et un entier tels que et .
- D'où l'on déduit les résultats souhaités à l'aide des théorèmes de comparaison sur les limites.
On a les résultats suivants, obtenus en formant le quotient des deux suites et en montrant qu'il tend vers :
- .
- .
- .
- .
Avec la notation de Hardy pour , on peut mémoriser l'essentiel de ces résultats sous la forme :
- :
Suites équivalentes
modifierPremiers pas
modifierIntuitivement, deux suites vont être équivalentes si elles sont « à peu près égales quand devient très grand », et ainsi elles auront le même « comportement » en l'infini. C'est ce que traduit la définition suivante :
On dit que deux suites et sont équivalentes, ce que l'on note , ou plus simplement , lorsqu'il existe une suite qui converge vers et telle que à partir d'un certain rang.
- Remarques
-
- Pour des suites équivalentes, la notation est non ambiguë (de même que la notation pour la limite d'une suite), contrairement à la notation pour des fonctions.
- D'après la définition, les seules suites équivalentes à la suite nulle sont les suites nulles à partir d'un certain rang. De plus, nous avons la caractérisation suivante, très utile pour déterminer des équivalents (attention, on a souvent tendance à penser que ceci constitue la définition des suites équivalentes).
- Remarque
- On en déduit que si et si est non nulle à partir d'un certain rang alors, pour assez grand, est non nul et du même signe que .
Regardons maintenant quelques exemples de suites équivalentes qui s'obtiennent directement en montrant que .
- Soit un réel non nul. Une suite converge vers si et seulement si .
- Soit une suite définie par où est un polynôme de degré et de coefficient dominant . Alors, .
- Soit la suite définie par . Alors, .
Montrons maintenant que le vocabulaire retenu ici est cohérent.
La relation est une relation d'équivalence. Pour rappel, on a alors, pour toutes suites , et :
- (réflexivité) ;
- si alors (symétrie) ;
- si et alors (transitivité).
La démonstration est assez directe mais rédigeons-la afin de nous habituer aux raisonnements. Soit , et trois suites.
- Pour la réflexivité :
- Posons . On a ainsi , ce qui par définition donne .
- Pour la symétrie :
- Supposons que .
- Alors, il existe une suite telle que et tel que . Comme converge vers , il existe tel que pour tout .
- On a ainsi et , et donc .
- Pour la transitivité :
- Supposons que et .
- Alors, il existe une suite telle que et tel que , et une suite telle que et tel que .
- Et finalement, et , d'où .
Opérations sur les suites équivalentes
modifierL'objectif est ici de voir les propriétés qui vont nous servir pour le calcul des équivalents. En premier lieu, voici les opérations qu'il est possible de réaliser sur les suites équivalentes, ce qui permettra de simplifier le calcul effectif d'équivalent :
Soient des suites numériques, et .
- Si et alors .
- En particulier, si alors et .
- Si et pour assez grand, alors .
- Si et pour assez grand, alors .
On ne démontre que la première propriété, les autres se démontrant de façon similaire.
Supposons que . Alors, il existe une suite telle que et tel que donc , ce qui prouve que .
De même, si alors .
La conclusion s'ensuit par transitivité.
- Remarques
- De manière générale, il est « interdit » de réaliser des sommes d'équivalents ou de composer une relation d'équivalence par une fonction. De manière formelle, si et , on peut avoir , et pour une fonction , .
- Par exemple, on a mais .
- Et pour la composition, un contre-exemple est donné, pour , par mais .
Voyons maintenant des équivalents qui serviront de référence. Tous se déduisent d'équivalents usuels en 0 de fonctions, en les composant à droite par la suite.
Soit une suite numérique telle que , alors :
- ;
- ;
- et ;
- pour tout : .
- En particulier : .
Applications
modifierIci, nous allons voir quelques applications du calcul d'équivalent. Ces applications vont reposer majoritairement sur les propriétés suivantes :
Soient deux suites telles que . Alors :
- Si admet une limite (finie ou infinie) alors admet la même limite.
- Si est bornée alors aussi.
Supposons que . Alors, il existe une suite telle que et tel que .
- Si alors, par produit des limites, donc (puisque ) .
- Si est bornée alors également (car est convergente donc bornée) donc est bornée.
Utilisons maintenant la notion d'équivalence pour le calcul de limite de suite :
Soit . Déterminons la limite de la suite définie pour tout par .
On a : . Et donc : .
Finalement, par continuité de l'exponentielle, on obtient : .
Interactions entre les notions
modifierDans cette partie, nous allons donner des résultats sur le comportement des trois notions vues ci-dessus entre elles. À ce stade, le lecteur débutant peut se sentir submergé par le nombre de résultats à retenir mais il faut bien voir qu'une fois les notions bien comprises (à travers des exercices), la majorité des résultats de cette leçon deviennent élémentaires. Les démonstrations découlant directement des définitions, elles seront laissées à titre d’exercice.
Soient deux suites. On a :
- si et seulement si ,
ou encore :
- si et seulement si .
Soient quatre suites. On a les résultats :
- si et , alors ;
- si et , alors ;
- si et , alors .