Mécanique 1 (PCSI)/Description et paramétrage du mouvement d'un point : Généralités

Début de la boite de navigation du chapitre
Description et paramétrage du mouvement d'un point : Généralités
Icône de la faculté
Chapitre no 1
Leçon : Mécanique 1 (PCSI)
Retour auSommaire
Chap. suiv. :Description et paramétrage du mouvement d'un point : Systèmes de coordonnées
fin de la boite de navigation du chapitre
En raison de limitations techniques, la typographie souhaitable du titre, « Mécanique 1 (PCSI) : Description et paramétrage du mouvement d'un point : Généralités
Mécanique 1 (PCSI)/Description et paramétrage du mouvement d'un point : Généralités
 », n'a pu être restituée correctement ci-dessus.

Espace et temps classiques en cinématique newtonienne

modifier

Caractère « absolu » de l'espace et du temps en cinématique newtonienne

modifier

     Newton [1] postule  de façon implicite  le caractère absolu de l'espace :
          Newton postule « l'espace existerait indépendamment de la matière et de l'énergie et servirait de cadre dans lequel se positionneraient ces derniers » [2] ;

       Newton il postule  également de façon implicite  le caractère absolu du temps :
       Newton il postule « selon lui, le temps préexiste à l'Univers, il " s'écoule " toujours dans le même sens et
       Newton il postule « selon lui, le temps préexiste à l'Univers, cet " écoulement " est indépendant de l'espace et du contenu de ce dernier » [3].

Référentiel d'espace

modifier

     Un référentiel d'espace est un « solide » [4] de référence par rapport auquel on repère le point ;

     Un référentiel d'espace pour quantifier le repérage du point il faudra attacher au référentiel d'espace un repère d'espace
     Un référentiel d'espace pour quantifier le repérage du point il faudra attacher au référentiel d'espace  c.-à-d. une origine et trois vecteurs de base .

Référentiel de temps

modifier

     Un référentiel de temps est une « horloge » [5] de référence utilisée pour repérer l’événement ;

     Un référentiel de temps pour quantifier le repérage de l’événement il faudra attacher au référentiel de temps un repère de temps  c.-à-d. une origine des temps et une unité [6] .

Référentiel d'espace-temps

modifier

     Le choix simultané des deux référentiels définit un « référentiel d'espace - temps » [7].

Référentiel d'observation, caractère relatif du mouvement

modifier

Choix d'un référentiel d'observation (ou d'étude) pour définir le mouvement d'un point

modifier

     Décrire le mouvement d'un point c'est donner sa position relativement à son environnement aux différents instants successifs de son évolution ;

     il faut donc préciser le référentiel d'espace relativement auquel la position du point est décrite et

     il faut donc préciser le référentiel de temps relativement auquel les événements sont repérés, c.-à-d.

     il faut donc préciser choisir un référentiel d'espace-temps appelé « référentiel d'étude  ou d'observation ».

Choix d'un repère d'espace-temps lié au référentiel d'étude (ou d'observation) pour quantifier le mouvement du point

modifier

     Pour décrire quantitativement le mouvement d'un point, on choisit

  • un repère d'espace  c.-à-d. une origine d'espace et une base orthonormée  usuellement directe [8], l'espace étant supposé orienté à droite [9]  lié à la composante d'espace du référentiel d'étude et
  • un repère de temps  encore appelé « chronologie » c.-à-d. une origine de temps et « unité de temps » [10]  lié à la composante de temps du référentiel d'étude.

Repérage d'un événement ponctuel dans un repère d'espace-temps lié au référentiel d'étude (ou d'observation)

modifier

     Le repérage d'un événement ponctuel dans un repère d'espace-temps lié au référentiel d'étude  ou d'observation  nécessite le repérage

  • dans l'espace qui se fait par  un vecteur   appelé « vecteur position du lieu » [11]  est en général l'origine du repère d'espace [12] et   le lieu où se produit l'événement ponctuel
    dans l'espace qui se fait par   on parle de repérage intrinsèque [13]  ou
    dans l'espace qui se fait par  trois scalaires appelés « coordonnées du lieu »  le repérage utilisant la base choisie  et
  • dans le temps qui se fait par un scalaire   appelé « date de l'événement ».

Définition de l'unité légale de temps « la seconde » (symbole « s »)

modifier

     L'unité légale de mesure du temps est « la seconde »  symbole   dont la définition est donnée ci-dessous :

Définition de l'unité légale de longueur « le mètre » (symbole « m »)

modifier

     L'unité légale de mesure du longueur est « le mètre »  symbole   dont la définition est donnée ci-dessous :

Caractère relatif du mouvement du point

modifier

     Si on considère deux référentiels dont les repères d'espace sont en mouvement l'un par rapport à l'autre et un point   immobile relativement au 1er, ce point   étant un point lié au 1er repère d'espace se déplace relativement au 2ème comme tout point lié au 1er repère ;

     le point   n'a donc pas le même mouvement relativement aux deux repères d'espace, son mouvement est donc relatif.

     Exemple : vous êtes assis dans un train  définissant le référentiel   lequel se déplace sur Terre  définissant le référentiel  , vous êtes immobile dans   et mobile dans  .

     Autre exemple : Un train s'apprête à sortir de gare : il avance à une vitesse de   par rapport au sol.

     Autre exemple : Un passager, noté  , avance vers l'arrière du train à une vitesse de   par rapport au train.

     Autre exemple : À l'arrière du train se trouve un autre passager, noté  , qui fait signe à son ami, noté  , resté sur le quai.

     Autre exemple : Pour  ,   avance à   alors que pour  ,   est immobile !

     Autre exemple : Le mouvement de   dépend donc de l'observateur : c'est ce qu'on appelle la relativité du mouvement.

Description « intrinsèque » du mouvement d'un point, loi horaire vectorielle

modifier
On rappelle que « intrinsèque » signifie « indépendant du choix d'une base ».

Repérage intrinsèque du point M dans le référentiel d'espace, vecteur position de M

modifier

     Le repérage intrinsèque du point   dans le référentiel d'espace se fait par un vecteur   appelé « vecteur position [11] du point   dans le référentiel d'espace »,   étant un point fixe du référentiel d'espace choisi en général à l'origine du repère d'espace associé au référentiel.

Repérage d'un événement lié à M dans le référentiel de temps, date de l'événement

modifier

     Le repérage d'un évènement lié au point   dans le référentiel de temps se fait par un scalaire   appelé « date de l'événement » [16], l'origine des temps étant a priori arbitraire  souvent choisie au début du mouvement du point  l'événement origine étant alors l'occupation par le point   de sa position de départ      mais ce n'est pas une nécessité 
     dans le cas où le choix de l'origine des temps est arbitraire,   est un réel de signe quelconque,

  •   correspondant à la date d'un événement « antérieur » à l'événement origine et
  •   correspondant à la date d'un événement « postérieur » à l'événement origine.

Loi horaire vectorielle décrivant le mouvement de M relativement au référentiel d'étude

modifier

     Le mouvement de   dans le référentiel d'étude est caractérisé par la donnée de la fonction « » [17], fonction vectorielle de la variable scalaire  [18] définissant la loi horaire vectorielle du mouvement du point   dans le référentiel d'étude.

Trajectoire du mouvement de M dans le référentiel d'étude

modifier

     La trajectoire   du mouvement du point   dans le référentiel d'espace est l'ensemble des points du référentiel d'espace représentant les positions successives de au cours du temps ;

     « » est aussi l'« équation paramétrique vectorielle de la trajectoire  » [19].

Définition du vecteur vitesse du point, évaluation à partir d'un enregistrement régulier des positions et notion d'hodographe de pôle O du mouvement du point

modifier

     On utilise ici la notion de dérivée d'une fonction vectorielle de la variable   introduite dans le paragraphe « définition intrinsèque de la dérivée d'une fonction vectorielle d'une variable réelle » du chap.  de la leçon « Outils mathématiques pour la physique (PCSI) ».

     La notion d'hodographe de pôle   du mouvement d'un point n'est pas explicite dans le programme de physique de P.C.S.I., elle est à considérer comme un complément.

Définition (intrinsèque) du vecteur vitesse du point M dans le référentiel d'étude

modifier

     Le vecteur vitesse du point   relativement au référentiel d'étude  , noté   est la dérivée temporelle du vecteur position soit « » [20] ;
     Le vecteur vitesse du point   relativement au référentiel d'étude  , la norme du vecteur vitesse   s'exprime en  .

Évaluation du vecteur vitesse du point M à des instants d'un enregistrement régulier des positions du point

modifier
 
Détermination du vecteur vitesse du point à chaque instant d'un enregistrement de mouvement à intervalles de temps réguliers  à l'exception du 1er et du dernier [21]

     Si on suit la position de   sur sa trajectoire   aux instants successifs espacés de    voir enregistrement ci-contre , on évaluera le vecteur vitesse   du point   à un instant   quasi-quelconque de l'enregistrement [22] par

« » [23] soit,

     avec l'échelle des vitesses « » [24],
     avec l'échelle des vitesses «  est obtenu en reportant   à partir de  » voir figure ci-contre  

     Tous les vecteurs vitesse ont été représentés par utilisation de la méthode expliquée précédemment et
     Tous les vecteurs vitesse ont été représentés par utilisation de la méthode explicitée ci-contre en    en   on a reporté   ;

     il n'est pas possible de déterminer les vecteurs vitesse en   et en   par cette méthode  

Définition de l'hodographe de pôle O du mouvement de M

modifier
 
Tracé de l'hodographe de pôle   après détermination annexe du vecteur vitesse du point à chaque instant d'un enregistrement de mouvement à intervalles de temps réguliers  à l'exception du 1er et du dernier [25]
« L'hodographe   de pôle  [26] du mouvement de   dans le référentiel  » est
« l'ensemble des positions   dans   tel que  » [24], [27].


Construction de l'hodographe de pôle O du mouvement de M à partir d'un enregistrement régulier des positions du point

modifier

     Il suffit  à partir d'un même pôle  [26]  de reporter les vecteurs vitesse de   obtenus aux différents instants de l'enregistrement régulier
          Il suffit  à partir d'un même pôle   de reporter les vecteurs vitesse de    obtenus sur le schéma ci-dessus à droite , et
     on obtient alors une succession régulière de positions   permettant d'en déduire « l'hodographe de pôle  [26] du mouvement de  »
     on obtient alors une succession régulière de positions   permettant d'en déduire  voir ci-contre à gauche .

     Les positions   ne peuvent être obtenues aux instants extrêmes de l'enregistrement des positions de  .


Vecteur déplacement élémentaire du point M, autre définition de son vecteur vitesse

modifier

     Voir le paragraphe « définition intrinsèque du vecteur déplacement élémentaire le long d'une courbe continue » du chap.  de la leçon « Outils mathématiques pour la physique (PCSI) », l'introduction y étant faite en repérant le point   par son abscisse curviligne  [28] ;
     nous la reproduisons en repérant la position du point   sur sa trajectoire par l'instant d'occupation  [29] :

 
Introduction cinématique au vecteur déplacement élémentaire d'un point mobile le long d'une courbe

     Si le point mobile se déplace sur la courbe   avec un paramétrage cinématique,

  •   étant la position  supposée non anguleuse [30]  du point à l'instant   et
  •   celle  supposée également non anguleuse [30]  à l'instant infiniment proche  ,

     « le vecteur déplacement élémentaire du point mobile le long de la courbe   à partir de la date  » s'écrit « » ou encore
     « le vecteur déplacement élémentaire du point mobile le long de la courbe   à partir de la date  » s'écrit « »
     « le vecteur déplacement élémentaire du point mobile le long de la courbe   à partir de la date  » s'écrit ce qui peut être traduit par
     « le vecteur déplacement élémentaire du point mobile le long de la courbe   à partir de la date  » s'écrit « la différentielle de  » [31] soit
     « le vecteur déplacement élémentaire du point mobile le long de la courbe   à partir de la date  » s'écrit « » usuellement noté
     « le vecteur déplacement élémentaire du point mobile le long de la courbe   à partir de la date  » s'écrit « » [32].

     Propriété géométrique du vecteur déplacement élémentaire : « si  » il est « tangent à la courbe   en  » [33].

     Évaluation du vecteur déplacement élémentaire par utilisation du paramétrage cinématique : on différencie le vecteur position considéré comme fonction de   et on obtient
     Évaluation du vecteur déplacement élémentaire par utilisation du paramétrage cinématique : on différencie « » [34] soit « » [35] et par suite
     Évaluation du vecteur déplacement élémentaire par utilisation du paramétrage cinématique : le vecteur vitesse    quand il n'est pas nul  est tangent à la trajectoire en .

     Autre définition du vecteur vitesse du point  : « » [36] c.-à-d. « le taux de variation horaire du vecteur déplacement élémentaire   » obtenu en divisant ce dernier par  .

Définition du vecteur accélération du point, évaluation à partir de la détermination régulière des points de l'hodographe du mouvement de pôle O (ou directement sur la trajectoire)

modifier

     On prolonge la notion de dérivée 2nde d'une fonction scalaire de la variable   introduite dans le paragraphe « définition (de la dérivée 2nde d'une fonction scalaire) » du chap.  de la leçon « Outils mathématiques pour la physique (PCSI) » à celle de dérivée 2nde d'une fonction vectorielle de la variable  , la dérivée 1ère ayant été introduite dans le paragraphe « définition intrinsèque de la dérivée d'une fonction vectorielle d'une variable réelle » du chap.  de la même leçon « Outils mathématiques pour la physique (PCSI) ».

     On rappelle que la notion d'hodographe de pôle   du mouvement d'un point n'étant pas explicite dans le programme de physique de P.C.S.I.
     On rappelle que la notion d'hodographe de pôle   du mouvement d'un point doit être introduite pour être utilisée, c'est en effet un complément.

Définition (intrinsèque) du vecteur accélération du point M dans le référentiel d'étude

modifier

     Le vecteur accélération du point   relativement au référentiel d'étude  , noté   est la dérivée temporelle du vecteur vitesse soit « » [37] ;

     Le vecteur accélération du point   relativement au référentiel d'étude   c'est aussi la dérivée temporelle 2nde du vecteur position soit « » [38] ;
     Le vecteur accélération du point   relativement au référentiel d'étude   la norme du vecteur accélération   s'exprime en  .

Lien avec l'hodographe de pôle O du mouvement de M

modifier

     De la définition de « l’hodographe   de pôle  [26] du mouvement de   dans le référentiel  » à savoir « ensemble des positions   dans   tel que  [24], [27] », on déduit, en effectuant la dérivation temporelle de chaque membre, « » soit, en remarquant que «  est le vecteur vitesse du point   de l'hodographe   dans le référentiel  »,

« »
 
au même instant  , le vecteur vitesse de   sur l'hodographe   représente
le vecteur accélération de   sur la trajectoire  .
 
Détermination du vecteur vitesse du point   de l'hodographe de pôle   à chaque instant d'un enregistrement de mouvement à intervalles de temps réguliers  à l'exception du 1er et du dernier de l'hodographe [25]

     Suivant la position de   sur sa trajectoire tous les  , on a pu tracer les vecteurs vitesse aux différents instants, puis
     Suivant la position de   sur sa trajectoire tous les  , on a pu tracer l'hodographe   de pôle   correspondant  voir ci-contre  ;

     on transpose aux points   de   l'opération d'évaluation des vecteurs vitesse des points   de  [39]
     on transpose aux points   de   pour déterminer le vecteur vitesse d'un point   de   à un instant   quasi-quelconque [22] selon
     on transpose aux points   de   « » [40] soit,

     avec l'échelle des vitesses sur l'hodographe « » [24],
     avec l'échelle des vitesses «  est obtenu en reportant   à partir de  » voir figure ci-contre  

     Tous les vecteurs vitesse ont été représentés par utilisation de la méthode expliquée précédemment et
     Tous les vecteurs vitesse ont été représentés par utilisation de la méthode explicitée ci-contre en    ainsi en   on a reporté   ;

     il n'est pas possible de déterminer les vecteurs vitesse en   et en   par cette méthode  

Évaluation du vecteur accélération du point M à des instants d'un enregistrement régulier des positions du point

modifier
 
Report sur l'enregistrement de mouvement de   à intervalles de temps réguliers du vecteur accélération du point   obtenu sur l'hodographe de pôle   de cet enregistrement comme vecteur vitesse du point   considéré au même instant  à l'exception des deux 1ers et des deux derniers de l'enregistrement [21]

     Après détermination de l'hodographe et du vecteur vitesse d'un point   à un instant   quasi quelconque [22] du repérage sur l'hodographe  voir ci-contre à droite ,
     il suffit alors de reporter «  en  » sur  , le vecteur accélération étant alors représenté avec l'échelle des accélérations « » [24]  voir figure ci-contre à gauche avec le report en bleu des vecteurs vitesse des points de l'hodographe, lesquels vecteurs vitesse s'identifient aux vecteurs accélérations des points de la trajectoire correspondants .

     Contournement de l'utilisation de l'hodographe de pôle du mouvement de [41] : on peut déterminer directement sur l'enregistrement du mouvement de   à intervalles de temps réguliers, le vecteur accélération en un point   sans faire le tracé de l'hodographe ; pour cela
          Contournement de l'utilisation de l'hodographe de pôle du mouvement de  : on détermine les vecteurs vitesse dans les deux positions précédant et suivant le point   soit « » puis on utilise « » [42] ou, avec le report des expressions de   et  , « » soit,

avec l'échelle des accélérations « » [24],
«  déterminé en formant, à partir de  , la différence entre   et  »  

     Sur la figure ci-dessus à gauche, la construction sans référence à l'hodographe de pôle   de l'enregistrement du mouvement de  
     Sur la figure ci-dessus à gauche, la construction a été explicitée en vert, avec l'échelle des accélérations précédemment définie,
     Sur la figure ci-dessus à gauche, la construction a été explicitée en vert, pour le vecteur accélération   en formant, à partir de  , la différence entre   et  

Exploitation d'un enregistrement vidéo pour déterminer quantitativement l'évolution temporelle des vecteurs vitesse et accélération

modifier

     Il est possible de travailler sur un enregistrement vidéo  fait par vous-même [43] ou téléchargé [44] 
      Il est possible de travailler sur un enregistrement vidéo pour déterminer le vecteur vitesse ainsi que le vecteur accélération du point à un instant quasi quelconque [22],
      Il est possible de travailler sur un enregistrement vidéo pour déterminer les échelles des vitesses et des accélérations pouvant être différentes de celles simplificatrices utilisées précédemment  

Notes et références

modifier
  1. Newton (1643 - 1727) philosophe, mathématicien, physicien, astronome, alchimiste et théologien anglais, connu essentiellement de nos jours pour avoir fondé la mécanique classique, pour sa théorie de la gravitation et aussi pour la création du calcul infinitésimal ; en optique il a développé une théorie de la couleur et a aussi inventé un télescope composé d'un miroir primaire concave et d'un miroir secondaire plan, télescope connu de nos jours sous le nom de télescope de Newton.
  2. Trois siècles plus tard, Einstein postule que l'espace a une géométrie dépendant de la matière et de l'énergie qu'il contient, l'espace n'est donc pas considéré par lui comme absolu mais dépendant de son contenu ;
       Albert Einstein (1879 - 1955), physicien théoricien d'origine allemande, devenu apatride en   puis suisse en   ; on lui doit la théorie de la relativité restreinte publiée en  , la relativité générale en   ainsi que bien d'autres avancées dans le domaine de la mécanique quantique et la cosmologie ; il a reçu le prix Nobel de physique en   pour son explication de l'effet photoélectrique.
  3. Trois siècles plus tard, Einstein postule que le temps n'est pas absolu,
    • d'une part il n'est pas le même pour deux observateurs en mouvement l'un par rapport à l'autre  le temps " s'écoule " plus lentement pour un observateur immobile que pour un observateur mobile relativement à l'espace c'est ce qui est appelé la « dilatation du temps » ,
    • d'autre part il dépend de l'espace dans la mesure où il n'est pas le même dans le vide stellaire et dans le champ d'une planète ou d'une étoile  le temps " s'écoulant " plus lentement voire beaucoup plus lentement dans le champ d'une très grosse étoile  à tel point que son écoulement s'arrête sur l'horizon d'un trou noir  ;
       Albert Einstein (1879 - 1955), physicien théoricien d'origine allemande, devenu apatride en   puis suisse en   ; on lui doit la théorie de la relativité restreinte publiée en  , la relativité générale en   ainsi que bien d'autres avancées dans le domaine de la mécanique quantique et la cosmologie ; il a reçu le prix Nobel de physique en   pour son explication de l'effet photoélectrique.
  4. Un solide  au sens de la mécanique  est un système de points matériels indéformable.
  5. Une horloge est un appareil reproduisant un phénomène répétitif.
  6. Le sens est en effet toujours choisi du passé vers le futur.
  7. Toutefois, en cinématique newtonienne, l'espace et le temps restant indépendants, on peut se contenter de parler de référentiel d'espace et de référentiel de temps ;
       par contre ceci n'est plus vrai en cinématique relativiste  l'espace dépendant du temps et inversement , il est alors nécessaire d'introduire un référentiel d'espace - temps.
  8. Voir le paragraphe « base directe d'un espace orienté à droite » dans le chap.  de la leçon « Outils mathématiques pour la physique (PCSI) »  son orientation suivant la « règle de la main droite » décrite dans la note « 12 » du chapitre précité .
  9. Voir l'« introduction du paragraphe produit vectoriel de deux vecteurs (espace orienté à droite) » du chap.  de la leçon « Outils mathématiques pour la physique (PCSI) ».
  10. Le sens d'évolution du temps étant fixé du passé vers le futur, le vecteur unitaire de repérage du temps se limite au choix d'une unité.
  11. 11,0 et 11,1 Voir le paragraphe « repérage intrinsèque d'un point dans l'espace » du chap.  de la leçon « Outils mathématiques pour la physique (PCSI) ».
  12. Mais en fait il suffit que   soit un point fixe du repère.
  13. C.-à-d. de repérage n'utilisant pas de base.
  14. Les niveaux « hyperfins » de l'état fondamental résultent du dédoublement de cet état par l'interaction de leurs électrons avec le noyau ; sans tenir compte de cette interaction il n'y aurait qu'un niveau et avec elle, on obtient deux niveaux très proches l'un de l'autre, d'où le qualificatif « hyperfins » fournis à ces niveaux pour traduire la nécessité d'une observation « très fine » ;
       on nomme ces niveaux « hyperfins » et non « fins » car on réserve le qualificatif « fins » aux niveaux obtenus par levée de dégénérescence  c.-à-d. dédoublement ou détriplement ou autres   due à l'interaction entre le moment cinétique  voir fin de note  et le spin des électrons, la séparation des niveaux ainsi obtenus ne nécessitant qu'une observation « fine » et non « très fine »  
       Le moment cinétique d'un électron  voir le paragraphe « évaluation du vecteur moment cinétique de M en mouvement circulaire dans le référentiel d'étude par rapport au centre C du cercle » du chap.  la leçon « Mécanique 2 (PCSI) »  est une grandeur caractérisant « sa rotation orbitale », d'autant plus grande que le nombre quantique secondaire   l'est.
  15. Une conséquence de cette définition du   est que la vitesse de la lumière dans le vide s'en déduit, sa valeur étant  .
  16. L'événement étant l'occupation par le point d'une position de l'espace.
  17. En mathématique on note différemment la fonction et la valeur de la fonction pour une valeur de variable selon « »,
       en physique on adopte le plus souvent une même notation pour éviter l'inflation des notations « ».
  18. Voir le paragraphe « définition intrinsèque d'un champ (ou d'une fonction) vectoriel(le) de l'espace » du chap.  de la leçon « Outils mathématiques pour la physique (PCSI) ».
  19. De paramètre  .
  20. Usuellement, en mécanique, les dérivées temporelles sont notées en surmontant la fonction d'un point, mais
       on peut aussi utiliser la 2ème notation dite « forme différentielle de la dérivée » en introduisant le rapport des deux différentielles celle du vecteur position   et celle du temps   notions qui ont été introduites dans les paragraphes « définition intrinsèque de la différentielle d'une fonction vectorielle d'une variable réelle » et « élément différentiel d'une variable » du chap.  de la leçon « Outils mathématiques pour la physique (PCSI) ».
  21. 21,0 et 21,1 On a tracé la trajectoire par continuité associée à une certaine régularité mais ce tracé ne figure pas sur l'enregistrement.
  22. 22,0 22,1 22,2 et 22,3 À l'exception des instants initial et final  
  23. La justification résultant de la définition de la dérivée du vecteur position à l'instant   selon « » ainsi que
                 La justification résultant de celle de la dérivée du vecteur position à l'instant   selon « »,
       ces deux dérivées étant égales par continuité du vecteur vitesse  ce que nous présupposons  on peut réécrire le vecteur vitesse du point   à la date   «   » soit, en posant   pour symétriser l'expression, « » et enfin, on trouve une expression approchée en confondant le taux de variation précédent de   pour   petit avec sa limite quand  .
  24. 24,0 24,1 24,2 24,3 24,4 et 24,5 Le symbole « » signifiant « est représenté par » ou « représentant » suivant contexte.
  25. 25,0 et 25,1 On a tracé l'hodographe par continuité associée à une certaine régularité de ce dernier.
  26. 26,0 26,1 26,2 et 26,3 Point fixe du référentiel qui n'est pas nécessairement l'origine du vecteur position de  , nous adoptons la même notation pour simplifier l'exposé.
  27. 27,0 et 27,1 Par abus d'écriture on écrira « » sans oublier que ceci n'a de sens qu'avec le choix d'une échelle des vitesses.
  28. Voir le paragraphe « abscisse curviligne d'un point sur une courbe continue » du chap.  de la leçon « Outils mathématiques pour la physique (PCSI) ».
  29. Cette façon de procéder nécessitant un mouvement sur la courbe continue représente une « définition cinématique du vecteur déplacement élémentaire » alors que celle qui a été introduite dans le paragraphe « abscisse curviligne d'un point sur une courbe continue » du chap.  de la leçon « Outils mathématiques pour la physique (PCSI) » représente une « définition géométrique du vecteur déplacement élémentaire » indépendante de tout mouvement sur la courbe.
  30. 30,0 et 30,1 Position non anguleuse sur la trajectoire  on rappelle qu'en un point anguleux d'une courbe continue on définit deux demi-tangentes ne coïncidant pas, l'une à gauche et l'autre à droite, alors que pour un point non anguleux il n'existe qu'une seule tangente, nous n'envisageons pas le cas de figure avec un point anguleux .
  31. On utilise la propriété de la différentielle appliquée à un champ vectoriel d'une variable valable dans la mesure où   est un infiniment petit  la définition quant à elle étant rappelée dans le paragraphe « définition intrinsèque de la différentielle d'une fonction vectorielle d'une variable » du chap.  de la leçon « Outils mathématiques pour la physique (PCSI) » .
  32. Car la différentielle est en fait indépendante du choix de  .
  33. Voir le paragraphe « propriété géométrique du vecteur déplacement élémentaire le long d'une courbe continue » du chap.  de la leçon « Outils mathématiques pour la physique (PCSI) ».
  34. Revoir le paragraphe « définition intrinsèque de la différentielle d'une fonction vectorielle d'une variable réelle et sa façon de la calculer » du chap.  de la leçon « Outils mathématiques pour la physique (PCSI) ».
  35. L'instant où le vecteur déplacement élémentaire est défini n'est pas usuellement indiqué dans la notation   mais il en dépend évidemment.
  36. Contrairement à ce qu'on fait usuellement l'instant de définition du vecteur déplacement élémentaire a été précisé sous la forme   pour que la dépendance relativement à   du vecteur vitesse soit également présente dans le 2nd membre.
  37. Usuellement, en mécanique, les dérivées temporelles sont notées en surmontant la fonction d'un point, mais
       on peut aussi utiliser la 2ème notation dite « forme différentielle de la dérivée » en introduisant le rapport des deux différentielles celle du vecteur vitesse   et celle du temps   notions qui ont été introduites dans les paragraphes « définition intrinsèque de la différentielle d'une fonction vectorielle d'une variable réelle » et « élément différentiel d'une variable » du chap.  de la leçon « Outils mathématiques pour la physique (PCSI) ».
  38. Usuellement, en mécanique, les dérivées temporelles 2ndes sont notées en surmontant la fonction de deux points successifs, mais
       on peut aussi utiliser la 2ème notation dite « forme différentielle de la dérivée seconde » dont nous nous contenterons de dire qu'il s'agit de la notation contractée de « » sans chercher une autre signification, ce qui nécessiterait d'introduire trop de notions nouvelles  
  39. Voir le paragraphe « évaluation du vecteur vitesse du point M à des instants d'un enregistrement régulier des positions du point » plus haut dans ce chapitre.
  40. La justification résultant de la définition de la dérivée du vecteur position à l'instant   selon « » ainsi que
           La justification résultant de la définition de la dérivée du position celle à l'instant   selon « »,
       ces deux dérivées étant égales par continuité du vecteur vitesse sur l'hodographe  et donc par continuité du vecteur accélération sur la trajectoire, ce que nous présupposons  d'où «   » ou, avec  , « » et enfin, on trouve une expression approchée en confondant le taux de variation précédent de   pour   petit avec sa limite quand  .
  41. La notion d'hodographe de pôle   du mouvement de   est un complément de programme de physique de P.C.S.I. mais l'évaluation du vecteur accélération du point   directement sur l'enregistrement en est une exigence.
  42. La justification reproduit celle qui a été donnée pour « » en remplaçant «  par  » et «  par  »  
  43. Vous pouvez disposer, dans ce cas, du logiciel « AviStep » permettant de faire les pointages et les mesures, ce dernier est téléchargeable gratuitement à l'adresse « http://mcpd.pagesperso-orange.fr/Avistep/Avistep.html ».
  44. À l'adresse « http://mcpd.pagesperso-orange.fr/Avistep/Avistep.html » il est aussi possible de télécharger des exemples de vidéo et de les traiter à l'aide du logiciel « AviStep » ;
       un autre exemple se trouve à l'adresse « http://scphysiques.free.fr/TS/physiqueTS/vaTS.swf » où on trouve un enregistrement vidéo à télécharger permettant de suivre le tracé d'un vecteur vitesse à partir des positions régulières du mouvement d'un ballon de basket puis le tracé d'un vecteur accélération  les fichiers d'extension « .swf » étant en désuétude, le lecteur qui permettait initialement de les ouvrir n'est plus disponible, toutefois on trouve encore des lecteurs pour les ouvrir voir le site « https://recoverit.wondershare.fr/video-recovery/what-is-swf-file.html » .